Chinese Journal of Lasers, Volume. 49, Issue 17, 1701001(2022)
1560 nm Laser External Cavity Resonant Frequency Doubler Based on MgO∶PPLN Crystal
[1] Sun Q C, Jiang Y F, Mao Y L et al. Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources[J]. Optica, 4, 1214-1218(2017).
[2] Lodewyck J, Bloch M, García-Patrón R et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system[J]. Physical Review A, 76, 042305(2007).
[3] Feng J X, Wan Z J, Li Y J et al. Generation of 8.3 dB continuous variable quantum entanglement at a telecommunication wavelength of 1550 nm[J]. Laser Physics Letters, 15, 015209(2018).
[4] Feng J X, Wan Z J, Li Y J et al. Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20 km of optical fiber[J]. Optics Letters, 42, 3399-3402(2017).
[5] Zhang W H, Jiao N J, Li R X et al. Precise control of squeezing angle to generate 11 dB entangled state[J]. Optics Express, 29, 24315-24325(2021).
[6] Barrett M D, Sauer J A, Chapman M S. All-optical formation of an atomic Bose-Einstein condensate[J]. Physical Review Letters, 87, 010404(2001).
[7] Sortais Y, Bize S, Nicolas C et al. Cold collision frequency shifts in a 87Rb atomic fountain[J]. Physical Review Letters, 85, 3117-3120(2000).
[8] Eisaman M D, André A, Massou F et al. Electromagnetically induced transparency with tunable single-photon pulses[J]. Nature, 438, 837-841(2005).
[9] Zhu S N, Zhu Y Y, Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 278, 843-846(1997).
[10] Ast S, Nia R M, Schönbeck A et al. High-efficiency frequency doubling of continuous-wave laser light[J]. Optics Letters, 36, 3467-3469(2011).
[11] Cui X Y, Shen Q, Yan M C et al. High-power 671 nm laser by second-harmonic generation with 93% efficiency in an external ring cavity[J]. Optics Letters, 43, 1666-1669(2018).
[12] Yao W X, Wang Q W, Tian L et al. Realizing high efficiency 532 nm laser by optimizing the mode- and impedance-matching[J]. Laser Physics Letters, 18, 015001(2021).
[13] Li H, Feng J X, Wan Z J et al. Low noise continuous-wave single frequency 780 nm laser high efficiently generated by extra-cavity-enhanced frequency doubling[J]. Chinese Journal of Lasers, 41, 0502003(2014).
[14] Zhang J F, Chen Y P, Lu F et al. Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN[J]. Optics Express, 16, 6957-6962(2008).
[15] Tian Y H, Wang J P, Yang W H et al. Frequency doubling system for integrated quantum squeezed light source based on MgO∶LiNbO3 crystal[J]. Chinese Journal of Lasers, 47, 1108001(2020).
[16] Guo L, Chen H X, Zhang X B et al. Broadband yellow-orange laser output based on chirp structure MgO∶ PPLN sum-frequency[J]. Laser & Optoelectronics Progress, 57, 091901(2020).
[17] Wang F F, Nie H K, Liu J T et al. Miniaturized widely tunable MgO∶PPLN nanosecond optical parametric oscillator[J]. Chinese Journal of Lasers, 48, 0501015(2021).
[18] Boyd G, Kleinman D. Parametric interaction of focused Gaussian light beams[J]. IEEE Journal of Quantum Electronics, 4, 353(1968).
[19] Fejer M M, Magel G A, Jundt D H et al. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE Journal of Quantum Electronics, 28, 2631-2654(1992).
[20] Gayer O, Sacks Z, Galun E et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Applied Physics B, 91, 343-348(2008).
[21] Targat R L, Zondy J J, Lemonde P. 75%-efficiency blue generation from an intracavity PPKTP frequency doubler[J]. Optics Communications, 247, 471-481(2005).
[22] Zhang Y T, Qu Q Z, Qian J et al. Thermal effect analysis of 1560 nm laser frequency doubling in a PPLN crystal[J]. Chinese Journal of Lasers, 42, 0708002(2015).
[23] Yao Z J, Li Y J, Song Z et al. Continuous-wave single-frequency 1.5 μm laser based on all-solid-state unidirectional traveling-wave ring cavity[J]. Chinese Journal of Lasers, 48, 0501010(2021).
[24] Wang Y J, Li Z X, Zheng Y H et al. Determination of the thermal lens of a PPKTP crystal based on thermally induced mode-mismatching[J]. IEEE Journal of Quantum Electronics, 53, 7000307(2017).
[25] Black E D. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. American Journal of Physics, 69, 79-87(2001).
Get Citation
Copy Citation Text
Zhenyu Jiang, Jinxia Feng, Jingke Sun, Yuanji Li, Kuanshou Zhang. 1560 nm Laser External Cavity Resonant Frequency Doubler Based on MgO∶PPLN Crystal[J]. Chinese Journal of Lasers, 2022, 49(17): 1701001
Category: laser devices and laser physics
Received: Oct. 27, 2021
Accepted: Dec. 22, 2021
Published Online: Jul. 28, 2022
The Author Email: Jinxia Feng (fengjx@sxu.edu.cn)