Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1228010(2023)

Remote Sensing Rotating Object Detection Based on Multi-Scale Feature Extraction

Luobing Wu1, Yuhai Gu1,2、*, Wenhao Wu1, and Shuaixin Fan1
Author Affiliations
  • 1Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100089, China
  • 2Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100089, China
  • show less
    Figures & Tables(12)
    Structure diagram of CenterNet model
    Structure diagram of CenterNet-RS model
    Schematic of principle and structure of receptive field expansion module. (a) Schematic of principle; (b) schematic of structure
    Structure of adaptive feature fusion
    Presentation of DOTA dataset
    Effect presentations of the CenterNet-RS on DOTA dataset
    Structure of models in the ablation experiment
    • Table 1. Hardware and software environments for experimental and model construction

      View table

      Table 1. Hardware and software environments for experimental and model construction

      ExperimentContent
      CPUIntel Core i5
      GPUNvidia RTX 2080 Ti
      RAM16 GB
      OSUbuntu 18.04
      PlantformCUDA 10.0
      LibraryPyTorch
    • Table 2. Comparison of performance of CenterNet-RS and other models on DOTA dataset

      View table

      Table 2. Comparison of performance of CenterNet-RS and other models on DOTA dataset

      ModelBackboneRotatable-HeadmAP /%Running time /s
      R2CNNVGG-1660.670.263
      ICNResNeXt10168.160.221
      CAD-NetResNet10169.900.172
      RoI-TransResNet10169.590.175
      BBAVectorsResNet10175.360.086
      CenterNetResNet101×63.560.072
      RetinaNetDLA-34×62.760.081
      CenterNet-RSResNet10173.010.078
    • Table 3. AP of different algorithms detecting various objects on DOTA dataset

      View table

      Table 3. AP of different algorithms detecting various objects on DOTA dataset

      CategoryR2CNNICNCAD-NetRoI-TransBBA-VectorsCenterNet-RS
      mAP60.6768.1669.9069.5675.3673.01
      PL80.8981.3687.8088.6488.6392.37
      BD65.7574.3082.4078.5284.0674.86
      BR35.3447.7049.4043.4452.1350.42
      GTF67.4470.3273.5075.9269.5666.43
      SV59.9364.8971.1068.8178.2664.49
      LV50.9167.8263.5073.6880.4079.63
      SH55.8169.9876.7083.5988.0676.74
      TC90.6790.7690.9090.7490.8793.96
      BC66.9279.0679.2077.2787.2375.27
      ST72.3978.2073.3081.4686.3987.30
      SBF55.0653.6448.4058.3956.1162.72
      RA52.2362.9060.9053.5465.6269.16
      HA55.1467.0262.0062.8367.1066.76
      SP53.3564.1767.0058.9372.0859.60
      HC48.2250.2362.2047.6763.9656.05
    • Table 4. AP of different algorithms detecting various objects on UCAS-AOD dataset

      View table

      Table 4. AP of different algorithms detecting various objects on UCAS-AOD dataset

      MethodBackboneAPmAP
      CarAirplane
      R2CNN*VGG-1678.8989.7684.32
      ICNResNeXt10185.0290.3287.67
      CAD-NetResNet10188.3589.9389.14
      RoI-Trans*ResNet10187.9989.9088.95
      BBAVectorsResNet10190.2791.4190.84
      RetinaNet *DLA-3483.6489.5186.57
      CenterNetResNet10179.9090.6185.25
      CenterNet-RSResNet10189.3792.8291.10
    • Table 5. Comparison of AP values of different methods in ablation experiment

      View table

      Table 5. Comparison of AP values of different methods in ablation experiment

      CategoryCenterNetFPNFPN+ RFEMAFFRotatable-HeadFPN+Rotatable-HeadCenterNet-RS
      mAP63.4366.4468.9867.6467.0369.1473.01
      PL90.2091.2491.9490.8190.9991.1392.37
      BD68.1371.1273.4472.7569.7771.8674.86
      BR44.7247.2846.0145.1848.2349.8950.42
      GTF57.4959.9864.9862.9858.3959.9866.43
      SV54.4454.6956.4756.4463.8163.1664.49
      LV71.3775.7275.2972.3575.6779.1279.63
      SH66.3968.5469.9368.8073.9675.2176.74
      TC89.8290.5891.7993.7692.1792.0393.96
      BC63.2266.9071.5570.8669.9672.7475.27
      ST76.5984.2585.9886.7776.4583.2187.3
      SBF60.0561.1664.5659.8760.6160.8262.72
      RA62.8265.4867.6365.4364.9566.7169.16
      HA57.2860.2362.8363.6663.7665.8166.76
      SP47.9751.2657.6355.0050.9253.3159.60
      HC40.9348.1754.6849.9945.7252.0656.05
    Tools

    Get Citation

    Copy Citation Text

    Luobing Wu, Yuhai Gu, Wenhao Wu, Shuaixin Fan. Remote Sensing Rotating Object Detection Based on Multi-Scale Feature Extraction[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1228010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: May. 27, 2022

    Accepted: Jul. 14, 2022

    Published Online: Jun. 5, 2023

    The Author Email: Yuhai Gu (guyuhai@bistu.edu.cn)

    DOI:10.3788/LOP221716

    Topics