Infrared and Laser Engineering, Volume. 51, Issue 6, 20210648(2022)

Wideband terahertz metamaterial absorber for composite graphene/silicon hemispheres

Xianrui Meng1,2, Ming Zhang1,2, Yupeng Xi1,2, Ruzhi Wang1,2, Changhao Wang1,2, and Bo Wang1,2
Author Affiliations
  • 1Institute of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 2Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • show less
    References(21)

    [1] O’Hara J F, Withayachumnankul W, Al-Naib I. A review on thin-film sensing with terahertz waves[J]. Journal of Infrared Millimeter & Terahertz Waves, 33, 245-291(2012).

    [2] Liu Xinyuan, Zeng Hanwen, Tian Xi, . Transmission simulation and safety analysis of terahertz radiation in skin[J]. Optics and Precision Engineering, 29, 9(2021).

    [3] Chen G, Lin X, Wang Z. Enhanced reflective dichroism from periodic graphene ribbons via total internal reflection[J]. Opt Express, 27, 22508-22521(2019).

    [4] Kong X, Wang Z, Du L, et al. Optically transparent metamirror with broadband chiral absorption in the microwave region[J]. Opt Express, 27, 38029-38038(2019).

    [5] Wang Hua, Sun Xiaohong, Wang Zhen, . Characteristic analysis of metamaterial absorber in terahertz wavelength[J]. Infrared and Laser Engineering, 45, 1225003(2016).

    [6] Forouzeshfard M R, Ghafari S, Vafapour Z. Solute concentration sensing in two aqueous solution using an optical metamaterial sensor[J]. Journal of Luminescence, 230, 117734(2021).

    [7] Xu J, Li R-Q, Jiang X-P, . Ultra-wideband linear polarization converter based on square split ring[J]. Acta Physica Sinica, 68, 117801(2019).

    [8] Shen G, Zhang M, Ji Y, et al. Broadband terahertz metamaterial absorber based on simple multi-ring structures[J]. AIP Advances, 8, 075206(2018).

    [9] Landy N I. A perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [10] Baqir M A, Naqvi S A. Electrically tunable terahertz metamaterial absorber comprised Cu/Graphene strips[J]. Plasmonics, 15, 2205-2211(2020).

    [11] Wang Xin, Sun Lining, Shi Yunbo. Design and application of miniature multi-parameter water quality sensor chip[J]. Optics and Precision Engineering, 28, 2215-2226(2020).

    [12] Phon R, Lim S. Design and analysis of active metamaterial modulated by RF power level[J]. Sci Rep, 10, 8703(2020).

    [13] Li Quan, Liu Shanshan, Lu Guangda, . Active control of terahertz electromagnetically induced transparency metasurface using a graphene-metal hybrid structure[J]. Infrared and Laser Engineering, 49, 20210246(2020).

    [14] Zhong R, Yang L, Liang Z, et al. Ultrawideband terahertz absorber with a graphene-loaded dielectric hemi-ellipsoid[J]. Opt Express, 28, 28773-28781(2020).

    [15] Andryieuski A, Lavrinenko A V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach[J]. Opt Express, 21, 9144-9155(2013).

    [16] Zhang Y, Feng Y, Zhu B, et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Opt Express, 22, 22743-22752(2014).

    [17] Cao Tun, Li Kuan, Li Yang, . Tunable optical metamaterials and their applications[J]. Chinese Optics, 14, 968-985(2021).

    [18] Chen Xieyu, Tian Zhen. Recent progress in terahertz dynamic modulation based on graphene.[J]. Chinese Optics, 10, 86-97(2017).

    [19] Hwang E H, Das Sarma S. Dielectric function, screening, and plasmons in two-dimensional graphene[J]. Physical Review B, 75, 205418(2007).

    [20] Yang J, Zhu Z, Zhang J, et al. Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure[J]. Sci Rep, 8, 3239(2018).

    [21] Rahmanzadeh M, Rajabalipanah H, Abdolali A. Multilayer graphene-based metasurfaces: Robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers[J]. Appl Opt, 57, 959-968(2018).

    CLP Journals

    [1] Ziqun Wang, Zhenhua Li, Xiaofei Hu, Liang Xu, Yaru Wang, Meng Wang, Yuanping Li, Haiyun Yao, Xin Yan, Lanju Liang. Graphene-composite metamaterials-based multi-dimensional ultra-sensitive glutamic acid sensor[J]. Infrared and Laser Engineering, 2023, 52(9): 20230045

    Tools

    Get Citation

    Copy Citation Text

    Xianrui Meng, Ming Zhang, Yupeng Xi, Ruzhi Wang, Changhao Wang, Bo Wang. Wideband terahertz metamaterial absorber for composite graphene/silicon hemispheres[J]. Infrared and Laser Engineering, 2022, 51(6): 20210648

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 8, 2021

    Accepted: --

    Published Online: Dec. 20, 2022

    The Author Email:

    DOI:10.3788/IRLA20210648

    Topics