International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 42005(2025)
An overview on ceramic multi-material additive manufacturing: progress and challenges
[1] [1] Buchanan R C. 2018.Ceramic Materials for Electronics. 3rd edn. (CRC Press, Boca Raton).
[2] [2] Hao J G, Li W, Zhai J W and Chen H. 2019. Progress in highstrain perovskite piezoelectric ceramics.Mater. Sci. Eng.R135, 1–57.
[3] [3] Yan Q, Dong H H, Su J, Han J H, Song B, Wei Q S and Shi Y S. 2018. A review of 3D printing technology for medical applications.Engineering4, 729–742.
[4] [4] Chen A N et al. 2024. Multimaterial 3D and 4D bioprinting of heterogenous constructs for tissue engineering.Adv. Mater.36, 2307686.
[5] [5] Shuai C J, Shi X X, Yang F, Tian H F and Feng P. 2024. Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection.Int. J. Extrem. Manuf.6, 015101.
[6] [6] Luinge H and Warnet L L. 2020. On an application of multimaterial composite laminates in the aerospace sector.Adv. Compos. Hybrid Mater.3, 294–302.
[7] [7] Idaszek J. et al. 2021. Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: a step towards vascularized pancreas grafts.Bioprinting24, e00163.
[8] [8] Yan W, Page A, Nguyen-Dang T, Qu Y P, Sordo F, Wei L and Sorin F. 2019. Advanced multimaterial electronic and optoelectronic fibers and textiles.Adv. Mater.31, 1802348.
[9] [9] Guo F J, He Z C, Liu L, Li J and Huang Y D. 2022. High-strength and corrosion-resistant Al2O3 ceramics with excellent closed-cell structure.Ceram. Int.48, 33160–33166.
[10] [10] Liu G, Wang A Y, Tang R, Bai W H, Song Y W, Ji W and Wang W M. 2022. Fabrication and modeling of ultra-hard and high-strength B4C-based laminated ceramics by brazing joining.Ceram. Int.48, 27982–27987.
[11] [11] Akbar S, Dutta P and Lee C. 2006. High-temperature ceramic gas sensors: a review.Int. J. Appl. Ceram. Technol.3, 302–311.
[12] [12] Otitoju T A, Okoye P U, Chen G T, Li Y, Okoye M O and Li S X. 2020. Advanced ceramic components: materials, fabrication, and applications.J. Ind. Eng. Chem.85, 34–65.
[13] [13] Ni Y, Liu K, Wang J, Sun H J, Du Y Y and Liu W. 2021. Establishment of constitutive models and numerical simulation of dry pressing and solid state sintering processes of MgTiO3 ceramic.Ceram. Int.47, 8769–8780.
[14] [14] Chen A-N, Wu J-M, Cheng L-J, Liu S-J, Ma Y-X, Li H, Liu F, Chen S, Shi Y-S and Li C-H. 2020. Enhanced densification and dielectric properties of CaTiO3-0.3NdAlO3 ceramics fabricated by direct coagulation casting.J. Eur. Ceram. Soc.40, 1174–1180.
[15] [15] Chen A N, Wu J M, Liu M Y, Cheng L J, Chen J Y, Xiao H, Zhang X Y, Li C H and Shi Y S. 2017. Rapidin-situsolidification of SiO2 suspension by direct coagulation casting via controlled release of high valence counter ions from calcium iodate and pH shift.Ceram. Int.43, 1930–1936.
[16] [16] Nishihora R K, Rachadel P L, Quadri M G N and Hotza D. 2018. Manufacturing porous ceramic materials by tape casting—A review.J. Eur. Ceram. Soc.38, 988–1001.
[17] [17] Huang Z Z, Yang Y, Lv H P, Shi C X, Li T, Ling Y H, Chen T and Wang S R. 2023. Large-area anode-supported protonic ceramic fuel cells combining with multilayer-tape casting and hot-pressing lamination technology.J. Eur. Ceram. Soc.43, 428–437.
[18] [18] Sahoo B, Panda P K and Ramakrishna S. 2022. Electrospinning of functional ceramic nanofibers.Open Ceram.11, 100291.
[19] [19] Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J and Nino J C. 2006. Processing and structure relationships in electrospinning of ceramic fiber systems.J. Am. Ceram. Soc.89, 395–407.
[20] [20] Dong Y, Chen A N, Yang T, Gao S, Liu S N, Jiang H Y, Shi Y S and Hu C L. 2023. Ultra-lightweight ceramic scaffolds with simultaneous improvement of pore interconnectivity and mechanical strength.J. Mater. Sci. Technol.137, 247–258.
[21] [21] Chen A N, Chen J Y, Wu J M, Cheng L J, Liu R Z, Liu J, Chen Y, Li C H, Wen S F and Shi Y S. 2019. Porous mullite ceramics with enhanced mechanical properties prepared by SLS using MnO2 and phenolic resin coated double-shell powders.Ceram. Int.45, 21136–21143.
[22] [22] Chen A N, Wu J M, Liu K, Chen J Y, Xiao H, Chen P, Li C H and Shi Y S. 2018. High-performance ceramic parts with complex shape prepared by selective laser sintering: a review.Adv. Appl. Ceram.117, 100–117.
[23] [23] Wei Z H, Cheng L J, Ma Y X, Chen A N, Guo X F, Wu J M and Shi Y S. 2019. Direct fabrication mechanism of presintered Si3N4 ceramic with ultra-high porosity by laser additive manufacturing.Scr. Mater.173, 91–95.
[24] [24] Li F F, Ma N N, Chen J, Zhu M, Chen W H, Huang C C and Huang Z R. 2022. SiC ceramic mirror fabricated by additive manufacturing with material extrusion and laser cladding.Addit. Manuf.58, 102994.
[25] [25] Gonzalez-Gutierrez J, Cano S, Schuschnigg S, Kukla C, Sapkota J and Holzer C. 2018. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives.Materials11, 840.
[26] [26] Bagwan J K and Ahuja B B. 2023. Understanding and investigating rheological properties of HA/-TCP bio-ceramic composite ink for extrusion-based additive manufacturing process to fabricate bone scaffold.Mater. Today Proc.72, 911–917.
[27] [27] Lang V, Weingarten S, Wiemer H, Scheithauer U, Glausch F, Johne R, Michaelis A and Ihlenfeldt S. 2020. Process databased knowledge discovery in additive manufacturing of ceramic materials by multi-material jetting (CerAM MMJ).J. Manuf. Mater. Process.4, 74.
[28] [28] Du W C, Ren X R, Pei Z J and Ma C. 2020. Ceramic binder jetting additive manufacturing: a literature review on density.J. Manuf. Sci. Eng.142, 040801.
[29] [29] Li X J and Chen Y. 2021. Vat-photopolymerization-based ceramic manufacturing.J. Mater. Eng. Perform.30, 4819–4836.
[30] [30] Qi D H et al. 2022. 3D printed magnesium-doped -TCP gyroid scaffold with osteogenesis, angiogenesis, immunomodulation properties and bone regeneration capabilityin vivo.Biomater. Adv.136, 212759.
[31] [31] Su J et al. 2022. Three-dimensional printing of gyroidstructured composite bioceramic scaffolds with tuneable degradability.Biomater. Adv.133, 112595.
[32] [32] MacDonald E and Wicker R. 2016. Multiprocess 3D printing for increasing component functionality.Science353, aaf2093.
[33] [33] Rafiee M, Farahani R D and Therriault D. 2020. Multi-material 3D and 4D printing: a survey.Adv. Sci.7, 1902307.
[34] [34] Toursangsaraki M. 2018. A review of multi-material and composite parts production by modified additive manufacturing methods. (arXiv: 1808.01861).
[35] [35] Hasanov S, Alkunte S, Rajeshirke M, Gupta A, Huseynov O, Fidan I, Alifui-Segbaya F and Rennie A. 2022. Review on additive manufacturing of multi-material parts: progress and challenges.J. Manuf. Mater. Process.6, 4.
[36] [36] Gu D D, Shi X Y, Poprawe R, Bourell D L, Setchi R and Zhu J H. 2021. Material-structure-performance integrated laser-metal additive manufacturing.Science372, eabg1487.
[37] [37] Garca-Collado A, Blanco J M, Gupta M K and Dorado-Vicente R. 2022. Advances in polymers based Multi-Material Additive-Manufacturing Techniques: state-of-art review on properties and applications.Addit. Manuf.50, 102577.
[38] [38] Tan C L, Zhou K S and Kuang T C. 2019. Selective laser melting of tungsten-copper functionally graded material.Mater. Lett.237, 328–331.
[39] [39] Zhang Y N and Bandyopadhyay A. 2018. Direct fabrication of compositionally graded Ti-Al2O3 multi-material structures using Laser Engineered Net Shaping.Addit. Manuf.21, 104–111.
[40] [40] Chen A N, Lu L, Cheng L J, Wu J M, Liu R Z, Chen S, Chen Y, Wen S F, Li C H and Shi Y S. 2019. TEM analysis and mechanical strengthening mechanism of MnO2 sintering aid in selective laser sintered porous mullites.J. Alloys Compd.809, 151809.
[41] [41] Chen A N et al. 2025. Biocompatible piezoelectric lattice materials with ultrasound-regulated multimodal responses.Mater. Sci. Eng.R162, 100876.
[42] [42] Wang H H, Chi Y F, Huang H X, Su S H, Xue H W and Hou J. 2023. Combined use of 3D printing and computer-assisted navigation in the clinical treatment of multiple maxillofacial fractures.Asian J. Surg.46, 2284–2292.
[43] [43] Regassa Hunde B and Debebe Woldeyohannes A. 2022. Future prospects of computer-aided design (CAD)—A review from the perspective of artificial intelligence (AI), extended reality, and 3D printing.Results Eng.14, 100478.
[44] [44] Bhatt P M, Kabir A M, Peralta M, Bruck H A and Gupta S K. 2019. A robotic cell for performing sheet lamination-based additive manufacturing.Addit. Manuf.27, 278–289.
[45] [45] Weisensel L, Travitzky N, Sieber H and Greil P. 2004. Laminated object manufacturing (LOM) of SiSiC composites.Adv. Eng. Mater.6, 899–903.
[46] [46] Mohd Yusuf S, Mazlan N, Musa N H, Zhao X, Chen Y, Yang S F, Nordin N A, Mazlan S A and Gao N. 2023. Microstructures and hardening mechanisms of a 316L stainless steel/inconel 718 interface additively manufactured by multi-material selective laser melting.Metals13, 400.
[47] [47] Veron F, Lanoue F, Baco-Carles V, Kiryukhina K, Vendier O and Tailhades P. 2022. Selective laser powder bed fusion for manufacturing of 3D metal-ceramic multi-materials assemblies.Addit. Manuf.50, 102550.
[48] [48] Wang R, Gu D D, Lin K J, Chen C Y, Ge Q and Li D L. 2022. Multi-material additive manufacturing of a bio-inspired layered ceramic/metal structure: formation mechanisms and mechanical properties.Int. J. Mach. Tools Manuf.175, 103872.
[49] [49] Yang S F and Evans J R G. 2004. A multi-component powder dispensing system for three dimensional functional gradients.Mater. Sci. Eng.A379, 351–359.
[50] [50] Li W B, Armani A, Martin A, Kroehler B, Henderson A, Huang T S, Watts J, Hilmas G and Leu M. 2021. Extrusionbased additive manufacturing of functionally graded ceramics.J. Eur. Ceram. Soc.41, 2049–2057.
[51] [51] Pelz J S, Ku N, Shoulders W T, Meyers M A and Vargas-Gonzalez L R. 2021. Multi-material additive manufacturing of functionally graded carbide ceramics via active, in-line mixing.Addit. Manuf.37, 101647.
[52] [52] Palaniyappan S, Annamalai G, Sivakumar N K and Muthu P. 2023. Development of functional gradient multi-material composites using Poly Lactic Acid and walnut shell reinforced Poly Lactic Acid filaments by fused filament fabrication technology.J. Build. Eng.65, 105746.
[53] [53] Liu Z F et al. 2022. Multimaterial additive manufacturing manipulator for fabricating magnetoelectric pressure sensors.Sci. China Technol. Sci.65, 2542–2550.
[54] [54] Wick-Joliat R, Schroffenegger M and Penner D. 2023. Multi-material ceramic material extrusion 3D printing with granulated injection molding feedstocks.Ceram. Int.49, 6361–6367.
[55] [55] Qu P et al. 2021. Inkjet printing additively manufactured multilayer SOFCs using high quality ceramic inks for performance enhancement.Addit. Manuf.48, 102394.
[56] [56] Lee J H, Kim J H, Hwang K T, Hwang H J and Han K S. 2021. Digital inkjet printing in three dimensions with multiple ceramic compositions.J. Eur. Ceram. Soc.41, 1490–1497.
[57] [57] Liu W C, Chou V H Y, Behera R P and Le Ferrand H. 2022. Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites.Nat. Commun.13, 5015.
[58] [58] Xing H Y, Zou B, Liu X Y, Wang X F, Huang C Z and Hu Y F. 2020. Fabrication strategy of complicated Al2O3-Si3N4 functionally graded materials by stereolithography 3D printing.J. Eur. Ceram. Soc.40, 5797–5809.
[59] [59] Liu T, Guessasma S, Zhu J H, Zhang W H and Belhabib S. 2018. Functionally graded materials from topology optimisation and stereolithography.Eur. Polym. J.108, 199–211.
[60] [60] Han D, Yang C, Fang N X and Lee H. 2019. Rapid multi-material 3D printing with projection microstereolithography using dynamic fluidic control.Addit. Manuf.27, 606–615.
[61] [61] Hu K H, Zhao P C, Li J J and Lu Z G. 2022. High-resolution multiceramic additive manufacturing based on digital light processing.Addit. Manuf.54, 102732.
[62] [62] Cui H C et al. 2022. Design and printing of proprioceptive three-dimensional architected robotic metamaterials.Science376, 1287–1293.
[63] [63] Cheng J X et al. 2022. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects.Nat. Commun.13, 7931.
[64] [64] Orth A et al. 2022. On-the-fly 3D metrology of volumetric additive manufacturing.Addit. Manuf.56, 102869.
[65] [65] Toombs J T, Luitz M, Cook C C, Jenne S, Li C C, Rapp B E, Kotz-Helmer F and Taylor H K. 2022. Volumetric additive manufacturing of silica glass with microscale computed axial lithography.Science376, 308–312.
[66] [66] Raynaud J, Pateloup V, Bernard M, Gourdonnaud D, Passerieux D, Cros D, Madrangeas V and Chartier T. 2020. Hybridization of additive manufacturing processes to build ceramic/metal parts: example of LTCC.J. Eur. Ceram. Soc.40, 759–767.
[67] [67] Sun J X, Yu H S, Zeng D X and Shen P. 2022. Wire–powder–arc additive manufacturing: a viable strategy to fabricate carbide ceramic/aluminum alloy multi-material structures.Addit. Manuf.51, 102637.
[68] [68] Windsheimer H, Travitzky N, Hofenauer A and Greil P. 2007. Laminated object manufacturing of preceramicpaper-derived Si? SiC composites.Adv. Mater.19, 4515–4519.
[69] [69] Zhang X C and Liou F. 2021. Introduction to additive manufacturing.In Additive Manufacturing(eds Pou J, Riveiro A and Davim J P). (Elsevier, Amsterdam). pp 1–31.
[70] [70] Zhang Y, Jarosinski W, Jung Y G and Zhang J. 2018. Additive manufacturing processes and equipment.In Additive Manufacturing(eds Zhang J and Jung Y G). (Butterworth-Heinemann, Oxford). pp 39–51.
[71] [71] Pelz J S, Ku N, Meyers M A and Vargas-Gonzalez L R. 2021. Additive manufacturing of structural ceramics: a historical perspective.J. Mater. Res. Technol.15, 670–695.
[72] [72] Chen A N, Li M, Wu J M, Cheng L J, Liu R Z, Shi Y S and Li C H. 2019. Enhancement mechanism of mechanical performance of highly porous mullite ceramics with bimodal pore structures prepared by selective laser sintering.J. Alloys Compd.776, 486–494.
[73] [73] Li M, Chen A N, Lin X, Wu J M, Chen S, Cheng L J, Chen Y, Wen S F, Li C H and Shi Y S. 2019. Lightweight mullite ceramics with controlled porosity and enhanced properties prepared by SLS using mechanical mixed FAHSs/polyamide12 composites.Ceram. Int.45, 20803–20809.
[74] [74] Chen A N, Gao F, Li M, Wu J M, Cheng L J, Liu R Z, Chen Y, Wen S F, Li C H and Shi Y S. 2019. Mullite ceramic foams with controlled pore structures and low thermal conductivity prepared by SLS using core-shell structured polyamide12/FAHSs composites.Ceram. Int.45, 15538–15546.
[75] [75] Chen A N, Li M, Xu J, Lou C H, Wu J M, Cheng L J, Shi Y S and Li C H. 2018. High-porosity mullite ceramic foams prepared by selective laser sintering using fly ash hollow spheres as raw materials.J. Eur. Ceram. Soc.38, 4553–4559.
[76] [76] Koopmann J, Voigt J and Niendorf T. 2019. Additive manufacturing of a steel–ceramic multi-material by selective laser melting.Metall. Mater. Trans. B50, 1042–1051.
[77] [77] Gao J, Han Q Q, Soe S, Wang L Q, Zhang Z H, Zhang H, Song J, Liu Y, Setchi R and Yang S F. 2024. Laser additive manufacturing of TiB2-modified Cu15Ni8Sn/GH3230 heterogeneous materials: processability, interfacial microstructure and mechanical performance.Mater. Sci. Eng. A900, 146496.
[78] [78] Zhu W, Fu H, Xu Z F, Liu R Z, Jiang P, Shao X Y, Shi Y S and Yan C Z. 2018. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology.J. Eur. Ceram. Soc.38, 4604–4613.
[79] [79] Chen Z W, Li Z Y, Li J J, Liu C B, Lao C S, Fu Y L, Liu C Y, Li Y, Wang P and He Y. 2019. 3D printing of ceramics: a review.J. Eur. Ceram. Soc.39, 661–687.
[80] [80] Yang L, Wu S Q, Yan C Z, Chen P, Zhang L, Han C J, Cai C, Wen S F, Zhou Y and Shi Y S. 2021. Fatigue properties of Ti-6Al-4V Gyroid graded lattice structures fabricated by laser powder bed fusion with lateral loading.Addit. Manuf.46, 102214.
[81] [81] Del-mazo-barbara L and Ginebra M P. 2021. Rheological characterisation of ceramic inks for 3D direct ink writing: a review.J. Eur. Ceram. Soc.41, 18–33.
[82] [82] Saadi M A S R, Maguire A, Pottackal N T, Thakur S H, Ikram M M, Hart A J, Ajayan P M and Rahman M M. 2022. Direct ink writing: a 3D printing technology for diverse materials.Adv. Mater.34, 2108855.
[83] [83] Yirmibesoglu O D, Simonsen L E, Manson R, Davidson J, Healy K, Menguc Y and Wallin T. 2021. Multi-material direct ink writing of photocurable elastomeric foams.Commun. Mater.2, 82.
[84] [84] Demirrs A F et al. 2022. Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color.Nat. Commun.13, 4397.
[85] [85] Shahzad A and Lazoglu I. 2021. Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges.CompositesB225, 109249.
[86] [86] Ordoez E, Gallego J M and Colorado H A. 2019. 3D printing via the direct ink writing technique of ceramic pastes from typical formulations used in traditional ceramics industry.Appl. Clay Sci.182, 105285.
[87] [87] Chen A N, Qu C H, Shi Y S and Shi F F. 2020. Manufacturing strategies for solid electrolyte in batteries.Front. Energy Res.8, 571440.
[88] [88] Winarso R, Anggoro P W, Ismail R, Jamari J and Bayuseno A P. 2022. Application of fused deposition modeling (FDM) on bone scaffold manufacturing process: a review.Heliyon8, e11701.
[89] [89] Hu C and Qin Q H. 2020. Advances in fused deposition modeling of discontinuous fiber/polymer composites.Curr. Opin. Solid State Mater. Sci.24, 100867.
[90] [90] Solomon I J, Sevvel P and Gunasekaran J. 2021. A review on the various processing parameters in FDM.Mater. Today Proc.37, 509–514.
[91] [91] Klippstein H, Diaz De Cerio Sanchez A, Hassanin H, Zweiri Y and Seneviratne L. 2018. Fused deposition modeling for unmanned aerial vehicles (UAVs): a review.Adv. Eng. Mater.20, 1700552.
[92] [92] Huang Z Y, Shao G B and Li L Q. 2023. Micro/nano functional devices fabricated by additive manufacturing.Prog. Mater. Sci.131, 101020.
[93] [93] Elkaseer A, Chen K J, Janhsen J C, Refle O, Hagenmeyer V and Scholz S G. 2022. Material jetting for advanced applications: a state-of-the-art review, gaps and future directions.Addit. Manuf.60, 103270.
[94] [94] Vadodaria S and Mills T. 2020. Jetting-based 3D printing of edible materials.Food Hydrocolloids106, 105857.
[95] [95] Luo X Y. 2022. Application of inkjet-printing technology in developing indicators/sensors for intelligent packaging systems.Curr. Opin. Food Sci.46, 100868.
[96] [96] Magazine R, van Bochove B, Borandeh S and Seppl J. 2022. 3D inkjet-printing of photo-crosslinkable resins for microlens fabrication.Addit. Manuf.50, 102534.
[97] [97] Gingter P, Wtjen A M, Kramer M and Telle R. 2015. Functionally graded ceramic structures by direct thermal inkjet printing.J. Ceram. Sci. Technol.6, 119–124.
[98] [98] Enrquez E, Reinosa J J, Fuertes V and Fernndez J F. 2022. Advances and challenges of ceramic pigments for inkjet printing.Ceram. Int.48, 31080–31101.
[99] [99] Melchels F P W, Feijen J and Grijpma D W. 2010. A review on stereolithography and its applications in biomedical engineering.Biomaterials31, 6121–6130.
[100] [100] Vallet D, Pateloup V, Michaud P and Chartier T. 2022. Development of a 3D model to predict curing dimensions and conversion rates of curable ceramic systems during stereolithography 3D printing process.J. Eur. Ceram. Soc.42, 5851–5863.
[101] [101] Andreu A, Su P C, Kim J H, Ng C S, Kim S, Kim I, Lee J, Noh J, Subramanian A S and Yoon Y J. 2021. 4D printing materials for vat photopolymerization.Addit. Manuf.44, 102024.
[102] [102] Taormina G, Sciancalepore C, Messori M and Bondioli F. 2018. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends.J. Appl. Biomater. Funct. Mater.16, 151–160.
[103] [103] Pagac M, Hajnys J, Ma Q P, Jancar L, Jansa J, Stefek P and Mesicek J. 2021. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing.Polymers13, 598.
[104] [104] Wu H Z, Chen P, Yan C Z, Cai C and Shi Y S. 2019. Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing.Mater. Des.171, 107704.
[105] [105] Yang Y et al. 2016. Three dimensional printing of high dielectric capacitor using projection based stereolithography method.Nano Energy22, 414–421.
[106] [106] Zakeri S, Vippola M and Levnen E. 2020. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography.Addit. Manuf.35, 101177.
[107] [107] Ren D D, Xu W T, Gao Y and Wang Y G. 2023. UV curing behavior of a liquid polyborosilazane and stereolithography to SiBCN ceramic components.Ceram. Int.49, 11571–11578.
[108] [108] Zhang J, Yu K B, Wu J M, Ye C S, Zheng W, Liu H, Wen S F, Yan C Z and Shi Y S. 2023. Effects of ZrSiO4 content on properties of SiO2-based ceramics prepared by digital light processing.Ceram. Int.49, 9584–9591.
[109] [109] Pan M Z, Hua S B, Wu J M, Su J J, Zhang X Y and Shi Y S. 2023. Composite bioceramic scaffolds with controllable photothermal performance fabricated by digital light processing and vacuum infiltration.J. Eur. Ceram. Soc.43, 2245–2252.
[110] [110] Schwartz J J, Porcincula D H, Cook C C, Fong E J and Shusteff M. 2022. Volumetric additive manufacturing of shape memory polymers.Polym. Chem.13, 1813–1817.
[111] [111] Choi J W, Kim H C and Wicker R. 2011. Multi-material stereolithography.J. Mater. Proc. Technol.211, 318–328.
[112] [112] Fournier S, Chevalier J, Baeza G P, Chaput C, Louradour E, Sainsot P, Cavoret J and Reveron H. 2023. Ceria-stabilized zirconia-based composites printed by stereolithography: impact of the processing method on the ductile behaviour and its transformation features.J. Eur. Ceram. Soc.43, 2894–2906.
[113] [113] Choi J W, MacDonald E and Wicker R. 2010. Multi-material microstereolithography.Int. J. Adv. Manuf. Technol.49, 543–551.
[114] [114] Zhang J M, Hu Q P, Wang S, Tao J and Gou M L. 2020. Digital light processing based three-dimensional printing for medical applications.Int. J. Bioprint.6, 242.
[115] [115] Ge Q, Jian B C and Li H G. 2022. Shaping soft materials via digital light processing-based 3D printing: a review.Forces Mech.6, 100074.
[116] [116] Zhao Z, Tian X X and Song X Y. 2020. Engineering materials with light: recent progress in digital light processing based 3D printing.J. Mater. Chem.C8, 13896–13917.
[117] [117] Goodarzi Hosseinabadi H, Nieto D, Yousefinejad A, Fattel H, Ionov L and Miri A K. 2023. Ink material selection and optical design considerations in DLP 3D printing.Appl. Mater. Today30, 101721.
[118] [118] Luongo A, Falster V, Doest M B, Ribo M M, Eiriksson E R, Pedersen D B and Frisvad J R. 2020. Microstructure control in 3D printing with digital light processing.Comput. Graph. Forum39, 347–359.
[119] [119] Mao H C, Jia W X, Leung Y S, Jin J and Chen Y. 2021. Multimaterial stereolithography using curing-on-demand printheads.Rapid Prototyp. J.27, 861–871.
[120] [120] Mukherjee S, Schwartz J, Baluyot E, Chang T, Tringe J W, Spadaccini C M and Shusteff M. 2024. Towards microwave volumetric additive manufacturing: generation of a computational multi-physics model for localized curing.Addit. Manuf. Lett.10, 100209.
[121] [121] Chen A N, Wu J M, Liu Y X, Liu R Z, Cheng L J, Huo W L, Shi Y S and Li C H. 2018. Fabrication of porous fibrous alumina ceramics by direct coagulation casting combined with 3D printing.Ceram. Int.44, 4845–4852.
[122] [122] Wang M Z, Wu H Z, Yang L, Chen A N, Chen P, Wang H Z, Chen Z Y and Yan C Z. 2023. Structure design of arc-shaped auxetic metamaterials with tunable Poisson’s ratio.Mech. Adv. Mater. Struct.30, 1426–1436.
[123] [123] Zhang K Q, Wei K, Chen J X, Liang B, Fang D N and He R J. 2021. Stereolithography additive manufacturing of multiceramic triangle structures with tunable thermal expansion.J. Eur. Ceram. Soc.41, 2796–2806.
[124] [124] Yao S, Liu D G, Liu J L and An L. 2021. Ultrafast preparation of Al2O3–ZrO2 multiphase ceramics with eutectic morphology via flash sintering.Ceram. Int.47, 31555–31560.
[125] [125] Hirano K. 2005. Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1700°C.J. Eur. Ceram. Soc.25, 1191–1199.
[126] [126] Liu D G, Gao Y, Liu J L, Liu F Z, Li K, Su H J, Wang Y G and An L. 2016. Preparation of Al2O3–Y3Al5O12–ZrO2 eutectic ceramic by flash sintering.Scr. Mater.114, 108–111.
[127] [127] Du W Y, Ai Y L, He W, Chen W H, Liang B L and Lv C. 2020. Formation and control of “intragranular” ZrO2 strengthened and toughened Al2O3 ceramics.Ceram. Int.46, 8452–8461.
[128] [128] YaȘar Z A, Celik A M and Haber R A. 2022. Improving fracture toughness of B4C—SiC composites by TiB2 addition.Int. J. Refract. Met. Hard Mater.108, 105930.
[129] [129] Bermejo R, Torres Y, Baudn C, Snchez-Herencia A J, Pascual J, Anglada M and Llanes L. 2007. Threshold strength evaluation on an Al2O3–ZrO2 multilayered system.J. Eur. Ceram. Soc.27, 1443–1448.
[130] [130] Wu D J, Shi J, Niu F Y, Ma G Y, Zhou C and Zhang B. 2022. Direct additive manufacturing of melt growth Al2O3-ZrO2 functionally graded ceramics by laser directed energy deposition.J. Eur. Ceram. Soc.42, 2957–2973.
[131] [131] Chen D and Zheng X Y. 2018. Multi-material additive manufacturing of metamaterials with giant, tailorable negative poisson’s ratios.Sci. Rep.8, 9139.
[132] [132] Gouasmi S, Megueni A, Bouchikhi A S, Zouggar K and Sahli A. 2015. On the reduction of stress concentration factor around a notch using a functionally graded layer.Mater. Res.18, 971–977.
[133] [133] Hadj Mostefa A, Merdaci S and Mahmoudi N. 2018. An overview of functionally graded materials «FGM».In Proceedings of the Third International Symposium on Materials and Sustainable Development(eds Abdelbaki B, Safi B and Saidi M). (Springer, Cham, Germany). pp 267–278.
[134] [134] Lee Y D and Erdogan F. 1994. Residual/thermal stresses in FGM and laminated thermal barrier coatings.Int. J. Fract.69, 145–165.
[135] [135] Sadowski T and Nakonieczny K. 2008. Thermal shock response of FGM cylindrical plates with various grading patterns.Comput. Mater. Sci.43, 171–178.
[136] [136] Kasaeian A B, Vatan S H N and Daneshmand S. 2011. FGM materials and finding an appropriate model for the thermal conductivity.Proc. Eng.14, 3199–3204.
[137] [137] Ichinose N, Miyamoto N and Takahashi S. 2004. Ultrasonic transducers with functionally graded piezoelectric ceramics.J. Eur. Ceram. Soc.24, 1681–1685.
[138] [138] Zhu X H and Meng Z Y. 1995. Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator.Sens. Actuators A.48, 169–176.
[139] [139] Takagi K, Li J F, Yokoyama S and Watanabe R. 2003. Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators.J. Eur. Ceram. Soc.23, 1577–1583.
[140] [140] Bandyopadhyay A and Heer B. 2018. Additive manufacturing of multi-material structures.Mater. Sci. Eng. R.129, 1–16.
[141] [141] Benyahia K, Seriket H, Prod’hon R, Gomes S, Andr J C, Qi H J and Demoly F. 2022. A computational design approach for multi-material 4D printing based on interlocking blocks assembly.Addit. Manuf.58, 102993.
[142] [142] Peralta Marino G, De la Pierre S, Salvo M, Daz Lantada A and Ferraris M. 2022. Modelling, additive layer manufacturing and testing of interlocking structures for joined components.Sci. Rep.12, 2526.
[143] [143] Alcˆantara C C J, Landers F C, Kim S, De Marco C, Ahmed D, Nelson B J and Pan S. 2020. Mechanically interlocked 3D multi-material micromachines.Nat. Commun.11, 5957.
[144] [144] Rivera J, Hosseini M S, Restrepo D, Murata S, Vasile D, Parkinson D Y, Barnard H S, Arakaki A, Zavattieri P and Kisailus D. 2020. Toughening mechanisms of the elytra of the diabolical ironclad beetle.Nature.586, 543–548.
[145] [145] Lu L, Chen A N, Chen Y, Cheng L J, Wu J M, Liu R Z and Shi Y S. 2021. Effect of sintering temperature on microstructure, crystal structure and dielectric performance of Ba0.67Sr0.33TiO3 ceramics prepared by a novel direct coagulation casting via high valence counter ions (DCC-HVCI) method.Ceram. Int.47, 4055–4061.
[146] [146] Dong Y, Jiang H Y, Chen A N, Yang T, Zou T T and Xu D. 2020. Porous Al2O3 ceramics with spontaneously formed pores and enhanced strength prepared by indirect selective laser sintering combined with reaction bonding.Ceram. Int.46, 15159–15166.
[147] [147] Mu Y H, Chen J W, An X L, Liang J J, Li J G, Zhou Y Z and Sun X F. 2023. Effect of synergism of solid loading and sintering temperature on microstructural evolution and mechanical properties of 60 vol% high solid loading ceramic core obtained through stereolithography 3D printing.J. Eur. Ceram. Soc.43, 661–675.
[148] [148] Gao Y H, Xu G G, Zhao P, Liu L L and Zhang E L. 2023. One step co-sintering synthesis of gradient ceramic microfiltration membrane with mullite/alumina whisker bi-layer for high permeability oil-in-water emulsion treatment.Sep. Purif. Technol.305, 122400.
[149] [149] Wen J J, Qiu M H, Chen X F, Da X W and Fan Y Q. 2022. Fabrication of a dual-layer ceramic mesoporous membrane with high flux via a co-sintering process.Microporous Mesoporous Mater.334, 111764.
[150] [150] Zou D, Ke X B, Qiu M H, Chen X F and Fan Y Q. 2018. Design and fabrication of whisker hybrid ceramic membranes with narrow pore size distribution and high permeability via cosintering process.Ceram. Int.44, 21159–21169.
[151] [151] Bannister M J. 1968. Shape sensitivity of initial sintering equations.J. Am. Ceram. Soc.51, 548–553.
[152] [152] Zou D, Ni S Y, Yao H D, Hu C, Low Z X N and Zhong Z X. 2022. Co-sintering of ceramic ultrafiltration membrane with gradient pore structures for separation of dye/salt wastewater.Sep. Purif. Technol.302, 122030.
[153] [153] Li S, Li Y, Wei C C, Wang P, Gao P L, Zhou L J and Wen G W. 2021. One step co-sintering of silicon carbide ceramic membrane with the aid of boron carbide.J. Eur. Ceram. Soc.41, 1181–1188.
[154] [154] Zhang D W, Jonhson W, Herng T S, Xu X, Liu X J, Pan L M, He H and Ding J. 2022. High temperature co-firing of 3D-printed Al-ZnO/Al2O3 multi-material two-phase flow sensor.J. Materiomics8, 710–718.
[155] [155] Li Y et al. 2024. Improving the electric energy storage performance of multilayer ceramic capacitors by refining grains through a two-step sintering process.Chem. Eng. J.479, 147844.
[156] [156] Biesuz M, Grasso S and Sglavo V M. 2020. What’s new in ceramics sintering? A short report on the latest trends and future prospects.Curr. Opin. Solid State Mater. Sci.24, 100868.
[157] [157] Yao S, Liu Y S, Liu D G, Zhao K and Liu J L. 2023. Effect of the Al2O3 content on the microstructure evolution of flash-sintered Al2O3-8YSZ ceramics.Open Ceram.16, 100468.
[158] [158] Paredes C, Roleek J and Miranda P. 2024. Improving the strength of -TCP scaffolds produced by Digital Light Processing using two-step sintering.J. Eur. Ceram. Soc.44, 2571–2580.
[159] [159] Fele G, Biesuz M, Bettotti P, Moreno R and Sglavo V M. 2020. Flash sintering of yttria-stabilized zirconia/graphene nano-platelets composite.Ceram. Int.46, 23266–23270.
[160] [160] M’Peko J C, Francis J S C and Raj R. 2014. Field-assisted sintering of undoped BaTiO3: microstructure evolution and dielectric permittivity.J. Eur. Ceram. Soc.34, 3655–3660.
[161] [161] Perez-Maqueda L A, Gil-Gonzalez E, Perejon A, Lebrun J M, Sanchez-Jimenez P E and Raj R. 2017. Flash sintering of highly insulating nanostructured phase-pure BiFeO3.J. Am. Ceram. Soc.100, 3365–3369.
[162] [162] Jha S K and Raj R. 2014. Electric fields obviate constrained sintering.J. Am. Ceram. Soc.97, 3103–3109.
[163] [163] Orlova A I. 2022. Crystalline phosphates for HLW immobilization—composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology.J. Nucl. Mater.559, 153407.
[164] [164] Demuynck M, Erauw J P, Van Der Biest O, Delannay F and Cambier F. 2016. Influence of conductive secondary phase on thermal gradients development during Spark Plasma Sintering (SPS) of ceramic composites.Ceram. Int.42, 17990–17996.
[165] [165] Mukasyan A S, Rogachev A S, Moskovskikh D O and Yermekova Z S. 2022. Reactive spark plasma sintering of exothermic systems: a critical review.Ceram. Int.48, 2988–2998.
[166] [166] Chai J L, Zhu Y B, Wang Z G, Shen T L, Liu Y W, Niu L J, Li S F, Yao C F, Cui M H and Liu C. 2020. Microstructure and mechanical properties of SPS sintered Al2O3–ZrO2 (3Y)–SiC ceramic composites.Mater. Sci. Eng.A781, 139197.
[167] [167] Liu J W, Zhou X B, Tatarko P, Yuan Q, Zhang L, Wang H J, Huang Z R and Huang Q. 2020. Fabrication, microstructure, and properties of SiC/Al4SiC4 multiphase ceramics via anin-situformed liquid phase sintering.J. Adv. Ceram.9, 193–203.
[168] [168] Sciti D, Galizia P, Reimer T, Schoberth A, Gutirrez-Gonzalez C F, Silvestroni L, Vinci A and Zoli L. 2021. Properties of large scale ultra-high temperature ceramic matrix composites made by filament winding and spark plasma sintering.CompositesB216, 108839.
[169] [169] Funahashi S, Guo H Z, Guo J, Baker A L, Wang K, Shiratsuyu K and Randall C A. 2017. Cold sintering and co-firing of a multilayer device with thermoelectric materials.J. Am. Ceram. Soc.100, 3488–3496.
[170] [170] Zapata-Solvas E, Gmez-Garca D, Domnguez-Rodrguez A and Todd R I. 2015. Ultra-fast and energy-efficient sintering of ceramics by electric current concentration.Sci. Rep.5, 8513.
[171] [171] McKinnon R, Grasso S, Tudball A and Reece M J. 2017. Flash spark plasma sintering of cold-Pressed TiB2-hBN.J. Eur. Ceram. Soc.37, 2787–2794.
[172] [172] Galotta A and Sglavo V M. 2021. The cold sintering process: a review on processing features, densification mechanisms and perspectives.J. Eur. Ceram. Soc.41, 1–17.
[173] [173] Guo J, Berbano S S, Guo H Z, Baker A L, Lanagan M T and Randall C A. 2016. Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials.Adv. Funct. Mater.26, 7115–7121.
[174] [174] Guo H Z, Baker A, Guo J and Randall C A. 2016. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics.J. Am. Ceram. Soc.99, 3489–3507.
[175] [175] Seo J H, Nakaya H, Takeuchi Y, Fan Z M, Hikosaka H, Rajagopalan R, Gomez E D, Iwasaki M and Randall C A. 2020. Broad temperature dependence, high conductivity, and structure-property relations of cold sintering of LLZO-based composite electrolytes.J. Eur. Ceram. Soc.40, 6241–6248.
[176] [176] Zhang X S, Chen Y J and Hu J L. 2018. Recent advances in the development of aerospace materials.Prog. Aerosp. Sci.97, 22–34.
[177] [177] Tang C, Dang A L, Li T H, Zhao T K, Li H and Jiao S S. 2019. Influence of fiber content on C/C-SiC brake materials fabricated by compression molding and hot sintering.Tribol. Int.136, 404–411.
[178] [178] Wang W, Li Q, Du A, Zhao X, Fan Y Z, Ma R N and Cao X M. 2019. Excellent thermal shock resistance of Al alloy-infiltrated SiC composites.J. Mater. Proc. Technol.269, 16–25.
[179] [179] Kesavan D, Gopiraman M and Sulochana N. 2012. Green inhibitors for corrosion of metals: a review.Chem. Sci. Rev. Lett.1, 1–8.
[180] [180] Lino Alves F J, Baptista A M and Marques A T. 2016. Metal and ceramic matrix composites in aerospace engineering.In Advanced Composite Materials for Aerospace Engineering(eds Rana S and Fangueiro R). (Woodhead Publishing, Amsterdam). pp 59–99.
[181] [181] Huda Z and Edi P. 2013. Materials selection in design of structures and engines of supersonic aircrafts: a review.Mater. Des.46, 552–560.
[182] [182] Tan B Z et al. 2023. Biomimetic hydroxyapatite coating on the 3D-printed bioactive porous composite ceramic scaffolds promoted osteogenic differentiation via PI3K/AKT/mTOR signaling pathways and facilitated bone regeneration in vivo.J. Mater. Sci. Technol.136, 54–64.
[183] [183] Wu X Q, Lian Q, Li D C and Jin Z M. 2019. Biphasic osteochondral scaffold fabrication using multi-material mask projection stereolithography.Rapid Prototyp. J.25, 277–288.
[184] [184] Imanaka Y, Amada H, Kumasaka F, Takahashi N, Yamasaki T, Ohfuchi M and Kaneta C. 2013. Nanoparticulated dense and stress-free ceramic thick film for material integration.Adv. Eng. Mater.15, 1129–1135.
[185] [185] Chen A N, Su J, Li Y J, Zhang H B, Shi Y S, Yan C Z and Lu J. 2023. 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering.Int. J. Extrem. Manuf.5, 032007.
[186] [186] Feng P, Zhao R Y, Tang W M, Yang F, Tian H F, Peng S P, Pan H and Shuai C J. 2023. Structural and functional adaptive artificial bone: materials, fabrications, and properties.Adv. Funct. Mater.33, 2214726.
[187] [187] Yan C Z, Ma G, Chen A N, Chen Y, Wu J M, Wang W, Yang S F and Shi Y S. 2020. Additive manufacturing of hydroxyapatite and its composite materials: a review.J. Micromech. Mol. Phys.5, 2030002.
[188] [188] Liu S, Mo L N, Bi G Y, Chen S G, Yan D W, Yang J Z, Jia Y G and Ren L. 2021. DLP 3D printing porous -tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry.Ceram. Int.47, 21108–21116.
[189] [189] Khare D, Basu B and Dubey A K. 2020. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications.Biomaterials.258, 120280.
[190] [190] Swain S, Padhy R N and Rautray T R. 2020. Polarized piezoelectric bioceramic composites exhibit antibacterial activity.Mater. Chem. Phys.239, 122002.
[191] [191] Ma H S, Feng C, Chang J and Wu C T. 2018. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy.Acta Biomater.79, 37–59.
[192] [192] Du Y Y, Guo J L, Wang J L, Mikos A G and Zhang S M. 2019. Hierarchically designed bone scaffolds: from internal cues to external stimuli.Biomaterials218, 119334.
[193] [193] Zhu C Q, Cai Z M, Cao X H, Fu Z X, Li L T and Wang X H. 2022. High-dielectric-constant nanograin BaTiO3-based ceramics for ultra-thin layer multilayer ceramic capacitors via grain grading engineering.Adv. Powder Mater.1, 100029.
[194] [194] Zhao Y, Meng X J and Hao X H. 2021. Synergistically achieving ultrahigh energy-storage density and efficiency in linear-like lead-based multilayer ceramic capacitor.Scr. Mater.195, 113723.
[195] [195] Xu Y R, Hou Y D, Song B B, Cheng H R, Zheng M P and Zhu M K. 2020. Superior ultra-high temperature multilayer ceramic capacitors based on polar nanoregion engineered lead-free relaxor.J. Eur. Ceram. Soc.40, 4487–4494.
[196] [196] Beaudrouet E, Vivet A, Lejeune M, Santerne C, Rossignol F, Dossou-Yovo C, Mougenot M and Noguera R. 2014. Stability of aqueous barium titanate suspensions for MLCC inkjet printing.J. Eur. Ceram. Soc.97, 1248–1255.
[197] [197] Chen M W, Qiu H P, Xie W J, Zhang B Y, Liu S H, Luo W D and Ma X. 2019. Research progress of continuous fiber reinforced ceramic matrix composite in hot section components of aero engine.IOP Conf. Ser.: Mater. Sci. Eng.678, 012043.
[198] [198] Tang S Y, Yang Y R, Fan Z T, Yang L, Yang Z Y, Ling Q and Wang P L. 2022. A novel composite binder design for direct ink writing alumina-based ceramics with enhanced strength at low sintering temperature.Ceram. Int.48, 7963–7974.
[199] [199] Kim Y W, Chun Y S, Nishimura T, Mitomo M and Lee Y H. 2007. High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride.Acta Mater.55, 727–736.
[200] [200] Luo R-X et al. 2021. Ultrafast high-temperature sintering of silicon nitride: a comparison with the state-of-the-art techniques.J. Eur. Ceram. Soc.41, 6338–6345.
[201] [201] Ryan K R, Down M P and Banks C E. 2021. Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications.Chem. Eng. J.403, 126162.
[202] [202] Alarifi I M. 2022. Ceramic nanomaterials.In Synthetic Engineering Materials and Nanotechnology(ed Alarifi I M). (Elsevier, Amsterdam). pp 195–212.
[203] [203] Nisar A, Zhang C, Boesl B and Agarwal A. 2023. Synthesis of Hf6Ta2O17 superstructure via spark plasma sintering for improved oxidation resistance of multi-component ultrahigh temperature ceramics.Ceram. Int.49, 783–791.
[204] [204] Li R et al. 2022. Magnetically encoded 3D mesostructure with high-order shape morphing and high-frequency actuation.Natl Sci. Rev.9, nwac163.
[205] [205] Wang C W et al. 2020. A general method to synthesize and sinter bulk ceramics in seconds.Science368, 521–526.
[206] [206] Chung W H, Hwang H J, Lee S H and Kim H S. 2013.In situmonitoring of a flash light sintering process using silver nano-ink for producing flexible electronics.Nanotechnology24, 035202.
[207] [207] Wang C, Tan X P, Tor S B and Lim C S. 2020. Machine learning in additive manufacturing: state-of-the-art and perspectives.Addit. Manuf.36, 101538.
[208] [208] Meng L B, McWilliams B, Jarosinski W, Park H Y, Jung Y G, Lee J and Zhang J. 2020. Machine learning in additive manufacturing: a review.JOM72, 2363–2377.
Get Citation
Copy Citation Text
Li Yifei, Chen Annan, Su Jin, Li Yinjin, Zhang Yue, Li Zhaoqing, Zhou Shixiang, He Jinhan, Cao Zhaowenbo, Shi Yusheng, Lu Jian, Yan Chunze. An overview on ceramic multi-material additive manufacturing: progress and challenges[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 42005
Category: Topical Review
Received: Sep. 6, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: