Frontiers of Optoelectronics, Volume. 18, Issue 1, 1(2025)

Laser speckle contrast imaging with principal component and entropy analysis: a novel approach for depth‑independent blood flow assessment

Surkov Yu., Timoshina P., Serebryakova I., Stavtcev D., Kozlov I., Piavchenko G., Meglinski I., Konovalov A., Telyshev D., Kuznetcov S., Genina E., and Tuchin V.
References(55)

[1] [1] Konovalov, A., Gadzhiagaev, V., Grebenev, F., Stavtsev, D., Piavchenko, G., Gerasimenko, A., Telyshev, D., Meglinski, I., Eliava, S.: Laser speckle contrast imaging in neurosurgery: a systematic review. World Neurosurg. 171, 35–40 (2023)

[2] [2] Kuri, P.M., Pion, E., Mahl, L., Kainz, P., Schwarz, S., Brochhausen, C., Aung, T., Haerteis, S.: Deep learning-based image analysis for the quantification of tumor-induced angiogenesis in the 3d in vivo tumor model—establishment and addition to laser speckle contrast imaging (LSCI). Cells 11(15), 2321 (2022)

[3] [3] Yu, C.Y., Chammas, M., Gurden, H., Lin, H.H., Pain, F.: Design and validation of a convolutional neural network for fast, model-free blood flow imaging with multiple exposure speckle imaging. Biomed. Opt. Express 14(9), 4439–4454 (2023)

[4] [4] Meglinski, I., Dunn, A., Durduran, T., Postnov, D., Zhu, D.: Dynamic light scattering in biomedical applications: feature issue introduction. Biomed. Opt. Express 15(5), 2890–2897 (2024)

[5] [5] Abdurashitov, A.S., Lychagov, V.V., Sindeeva, O.A., Semyachkina-Glushkovskaya, O.V., Tuchin, V.V.: Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring. Front. Optoelectron. 8(2), 187–194 (2015)

[6] [6] Sdobnov, A., Zherebtsov, E., Bykov, A., Meglinski, I.: Dynamic light scattering imaging: foundations of non-invasive blood flow imaging. CRC Press (2024)

[7] [7] Shteinberg, O., Agdarov, S., Beiderman, Y., Bonneh, Y.S., Ziv, I., Kalyuzhner, Z., Zalevsky, Z: Microsaccades tracking by secondary speckle pattern analysis. J. Biophotonics e202400184(2024)

[8] [8] TzabariKelman, Y., Asraf, S., Ozana, N., Shabairou, N., Zalevsky, Z.: Optical tissue probing: human skin hydration detection by speckle patterns analysis. Biomed. Opt. Express 10(9), 4874–4883(2019)

[9] [9] Patel, D.D., Lipinski, D.M.: Validating a low-cost laser speckle contrast imaging system as a quantitative tool for assessing retinal vascular function. Sci. Rep. 10(1), 7177 (2020)

[10] [10] Sdobnov, A., Piavchenko, G., Bykov, A., Meglinski, I.: Advances in dynamic light scattering imaging of blood flow. Laser Photonics Rev. 18(2), 2300494 (2024)

[11] [11] Heeman, W., Steenbergen, W., van Dam, G., Boerma, E.C.: Clinical applications of laser speckle contrast imaging: a review. J. Biomed. Opt. 24(8), 080901 (2019)

[12] [12] Mennes, O.A., van Netten, J.J., van Baal, J.G., Steenbergen, W.: Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging. Physiol. Meas. 40(6), 065002 (2019)

[13] [13] Feng, W., Liu, S., Zhang, C., Xia, Q., Yu, T., Zhu, D.: Comparison of cerebral and cutaneous microvascular dysfunction with the development of type 1 diabetes. Theranostics 9(20), 5854–5868(2019)

[14] [14] Gnyawali, S.C., Wheeler, D.G., Huttinger, A.L., Anderson, C., Mandybur, I., Lee, C., Hatten, C., Boue, J., Joseph, M., Nimjee, S.M.: Quantification of cerebral perfusion using laser speckle imaging and infarct volume using MRI in a pre-clinical model of posterior circulation stroke. J. Vis. Exp. 165(165), e61673 (2020)

[15] [15] Tenland, K., Berggren, J., Engelsberg, K., Bohman, E., Dahlstrand, U., Castelo, N., Lindstedt, S., Sheikh, R., Malmsj, M.: Successful free bilamellar eyelid grafts for the repair of upper and lower eyelid defects in patients and laser speckle contrast imaging of revascularization. Ophthal. Plast. Reconstr. Surg.. Plast. Reconstr. Surg. 37(2), 168–172 (2021)

[16] [16] Sdobnov, A., Tsytsarev, V., Piavchenko, G., Bykov, A., Meglinski, I.: Beyond life: Exploring hemodynamic patterns in postmortem mice brains. J. BiophotonicsBiophotonics 17(7), e202400017(2024)

[17] [17] Konovalov, A., Grebenev, F., Stavtsev, D., Kozlov, I., Gadjiagaev, V., Piavchenko, G., Telyshev, D., Gerasimenko, A.Y., Meglinski, I., Zalogin, S., Artemyev, A., Golodnev, G., Shumeiko, T., Eliava, S.: Real-time laser speckle contrast imaging for intraoperative neurovascular blood flow assessment: animal experimental study. Sci. Rep. 14(1), 1735 (2024)

[18] [18] Gonzlez Olmos, A., Zilpelwar, S., Sunil, S., Boas, D.A., Postnov, D.D.: Optimizing the precision of laser speckle contrast imaging. Sci. Rep. 13(1), 17970 (2023)

[19] [19] Li, D.Y., Xia, Q., Yu, T.T., Zhu, J.T., Zhu, D.: Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: from Monte Carlo simulation to experimental demonstration. Light Sci. Appl. 10(1), 241 (2021)

[20] [20] Pinho, A., Brinca, A., Xar, J., Batista, M., Vieira, R.: Postoperative time and anatomic location influence skin graft reperfusion assessed with laser speckle contrast imaging. Lasers Surg. Med.56(6), 564–573 (2024)

[21] [21] Wang, J., Zhu, D.A.N., Chen, M.I.N., Liu, X.: Assessment of optical clearing induced improvement of laser speckle contrast imaging. J. Innov. Opt. Health Sci. 3(3), 159–167 (2010)

[22] [22] Feng, W., Shi, R., Zhang, C., Liu, S., Yu, T., Zhu, D.: Visualization of skin microvascular dysfunction of type 1 diabetic mice using in vivo skin optical clearing method. J. Biomed. Opt. 24(3),1–9 (2018)

[23] [23] Arias-Cruz, J.A., Chiu, R., Peregrina-Barreto, H., Ramos-Garcia, R., Spezzia-Mazzocco, T., Ramirez-San-Juan, J.C.: Visualization of in vitro deep blood vessels using principal component analysis based laser speckle imaging. Biomed. Opt. Express 10(4), 2020–2031 (2019)

[24] [24] Dyachenko, P.A., Abdurashitov, A.S., Semyachkina-Glushkovskaya, O.V., Tuchin, V.V.: Blood and lymph flow imaging at optical clearing. In: Handbook of Tissue Optical Clearing. CRC Press,393–408 (2022)

[25] [25] Tuchina, D.K., Timoshina, P.A., Tuchin, V.V., Bashkatov, A.N., Genina, E.A.: Kinetics of rat skin optical clearing at topical application of 40% glucose: ex vivo and in vivo studies. IEEE J. Sel. Top. Quantum Electron. 25(1), 1–8 (2019)

[26] [26] Dunn, A.K., Bolay, H., Moskowitz, M.A., Boas, D.A.: Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. Cereb. Blood Flow Metab. 21(3), 195–201(2001)

[27] [27] Boulaftali, Y., Lamrani, L., Rouzaud, M.C., Loyau, S., Jandrot-Perrus, M., Bouton, M.C., Ho-Tin-No, B.: The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy. Thromb. Haemost.. Haemost. 107(5), 962–971 (2012)

[28] [28] Morales-Vargas, E., Peregrina-Barreto, H., Fuentes-Aguilar, R.Q., Padilla-Martinez, J.P., Garcia-Suastegui, W.A., Ramirez-San-Juan, J.C.: Improving blood vessel segmentation and depth estimation in laser speckle images using deep learning. Information (Basel) 15(4), 185 (2024)

[29] [29] Dunn, J.F., Forrester, K.R., Martin, L., Tulip, J., Bray, R.C.: A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints. Lasers Surg. Med. 43(1), 21–28 (2011)

[30] [30] Meisner, J.K., Niu, J., Sumer, S., Price, R.J.: Trans-illuminated laser speckle imaging of collateral artery blood flow in ischemic mouse hindlimb. J. Biomed. Opt. 18(9), 096011 (2013)

[31] [31] Phan, T., Crouzet, C., Kennedy, G.T., Durkin, A.J., Choi, B.: Quantitative hemodynamic imaging: a method to correct the effects of optical properties on laser speckle imaging. Neurophotonics 10(4), 045001 (2023)

[32] [32] Julin, A., Xia, J.: Polarization enhanced laser speckle contrast imaging for vascular dynamic study. In: Dynamics and Fluctuations in Biomedical Photonics XIV 10063, 118–125 (2017)

[33] [33] Liu, X., Yang, H., Li, R.: Improving contrast accuracy and resolution of laser speckle contrast imaging using two-dimensional entropy algorithm. IEEE Access 9, 148925–148932 (2021)

[34] [34] Feng, X., Geng, M., Meng, X., Zou, D., Jin, Z., Liu, G., Zhou, C., Ren, Q., Lu, Y.: SGLSA: Sphygmus gated laser speckle angiography for microcirculation hemodynamics imaging. Comput. Med. Imaging Graph.. Med. Imaging Graph. 103,102164 (2023)

[35] [35] Zheng, S., Mertz, J.: Direct characterization of tissue dynamics with laser speckle contrast imaging. Biomed. Opt. Express 13(8),4118–4133 (2022)

[36] [36] Miao, P., Chao, Z., Zhang, Y., Li, N., Thakor, N.V.: Entropy analysis reveals a simple linear relation between laser speckle and blood flow. Opt. Lett. 39(13), 3907–3910 (2014)

[37] [37] Li, C., Wang, R.: Dynamic laser speckle angiography achieved by eigen-decomposition filtering. J. BiophotonicsBiophotonics 10(6–7), 805–810 (2017)

[38] [38] Wang, M., Guan, C., Mao, W., Xiong, H., Tan, H., Hang, D., Zeng, Y.: Real-time full-field optical angiography utilizing principal component analysis. Opt. Lett. 43(11), 2559–2562 (2018)

[39] [39] Chen, R., Miao, P., Tong, S.: Transmissive multifocal laser speckle contrast imaging through thick tissue. J. Innov. Opt. Health Sci.16(5), 2350005 (2023)

[40] [40] Jain, P., Sarma, S.E.: Measuring light transport properties using speckle patterns as structured illumination. Sci. Rep. 9(1), 11157(2019)

[41] [41] Al-Temeemy, A.A.: ALI: The adaptive levels of interval method for processing laser speckle images with superior activity extraction and discrimination capabilities. Opt. Lasers Eng. 178, 108173(2024)

[42] [42] Han, G., Li, D., Wang, J., Guo, Q., Yuan, J., Chen, R., Wang, J., Wang, H., Zhang, J.: Adaptive window space direction laser speckle contrast imaging to improve vascular visualization. Biomed. Opt. Express 14(6), 3086–3099 (2023)

[43] [43] Liu, C., Kl, K., Erdener, S.E., Boas, D.A., Postnov, D.D.: Choosing a model for laser speckle contrast imaging. Biomed. Opt. Express 12(6), 3571–3583 (2021)

[44] [44] Zherebtsov, E., Sdobnov, A., Sieryi, O., Kaakinen, M., Eklund, L., Myllyl, T., Bykov, A., Meglinski, I.: Enhancing transcranial blood flow visualization with dynamic light scattering technologies: advances in quantitative analysis. Laser Photonics Rev.2401016 (2024)

[45] [45] Bonachela, J.A., Hinrichsen, H., Muoz, M.A.: Entropy estimates of small data sets. J. Phys. A Math. Theor. 41(20), 202001 (2008)

[46] [46] Lpez-Alonso, J.M., Grumel, E., Cap, N.L., Trivi, M., Rabal, H., Alda, J.: Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis. Opt. Eng.55(12), 121705 (2016)

[47] [47] Davis, R.W.: A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J. Comp. Physiol. B 184(1), 23–53 (2014)

[48] [48] Agutter, P.S., Wheatley, D.N.: Metabolic scaling: consensus or controversy? Theor. Biol. Med. Model.. Biol. Med. Model. 1(1),13 (2004)

[49] [49] Kaiser, H.F.: A note on Guttman's lower bound for the number of common factors. Br. J. Stat. Psychol. 14(1), 1–2 (1961)

[50] [50] Kalchenko, V., Kuznetsov, Y., Meglinski, I., Harmelin, A.: Label free in vivo laser speckle imaging of blood and lymph vessels. J. Biomed. Opt. 17(5), 050502 (2012)

[51] [51] Kalchenko, V.V., Kuznetsov, Y.L., Meglinski, I.V.: Visualisation of blood and lymphatic vessels with increasing exposure time of the detector. Quantum Electron. 43(7), 679–682 (2013)

[52] [52] Kalchenko, V., Kuznetsov, Y., Preise, D., Meglinski, I., Harmelin, A.: Ear swelling test by using laser speckle imaging with a long exposure time. J. Biomed. Opt. 19(6), 060502 (2014)

[53] [53] Kalambur, V.S., Mahaseth, H., Bischof, J.C., Kielbik, M.C., Welch, T.E., Vilbck, A., Swanlund, D.J., Hebbel, R.P., Belcher, J.D., Vercellotti, G.M.: Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy. Am. J. Hematol. Hematol. 77(2), 117–125(2004)

[54] [54] Palochak, C.M.A., Lee, H.E., Song, J., Geng, A., Linsenmeier, R.A., Burns, S.A., Fawzi, A.A.: Retinal blood velocity and flow in early diabetes and diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy. J. Clin. Med. Clin. Med. 8(8),1165 (2019)

[55] [55] Kim, S., Kim, E., Anguluan, E., Kim, J.G.: Sample entropy analysis of laser speckle fluctuations to suppress motion artifact on blood flow monitoring. Chin. Opt. Lett. 20(1), 011702 (2022)

Tools

Get Citation

Copy Citation Text

Surkov Yu., Timoshina P., Serebryakova I., Stavtcev D., Kozlov I., Piavchenko G., Meglinski I., Konovalov A., Telyshev D., Kuznetcov S., Genina E., Tuchin V.. Laser speckle contrast imaging with principal component and entropy analysis: a novel approach for depth‑independent blood flow assessment[J]. Frontiers of Optoelectronics, 2025, 18(1): 1

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: RESEARCH ARTICLE

Received: Sep. 18, 2024

Accepted: Apr. 30, 2025

Published Online: Apr. 30, 2025

The Author Email:

DOI:10.1007/s12200-024-00143-1

Topics