Acta Optica Sinica, Volume. 39, Issue 3, 0301002(2019)

Classification Method of High-Resolution Remote Sensing Scenes Based on Fusion of Global and Local Deep Features

Xi Gong1, Liang Wu1,2, Zhong Xie1,2, Zhanlong Chen1,2, Yuanyuan Liu1、*, and Kan Yu3
Author Affiliations
  • 1 Department of Information Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
  • 2 National Engineering Research Center of Geographic Information System, Wuhan, Hubei 430074, China
  • 3 Department of Information Science and Technology, Wenhua College, Wuhan, Hubei 430074, China
  • show less
    Figures & Tables(17)
    Flow chart of GLDFB
    Network structure of VGG-19
    Reconstruction and coding of convolutional layer features
    Image examples of remote sensing scene. (a) UCM dataset; (b) SIRI dataset
    Time consumption for single iteration in k-means clustering process of 12 convolutional layer features under different K values. (a) UCM dataset; (b) SIRI dataset
    Classification accuracies of 12 convolutional layer features under different K values. (a) UCM dataset; (b) SIRI dataset
    Classification confusion matrix of GLDFB on UCM dataset
    Two kinds of misclassified scenes. (a) Road type; (b) building type
    Classification confusion matrix of GLDFB on SIRI dataset
    GLDFB results. (a) USGS large remote sensing image; (b) classification result
    • Table 1. Output feature dimensions of VGG-19 convolutional layers

      View table

      Table 1. Output feature dimensions of VGG-19 convolutional layers

      No.Layer nameFeature size
      1conv1_164×224× 224
      2conv1_264×224× 224
      3conv2_1128×112×112
      4conv2_2128×112×112
      5conv3_1256×56×56
      6conv3_2256×56×56
      7conv3_3256×56×56
      8conv3_4256×56×56
      9conv4_1512×28×28
      10conv4_2512×28×28
      11conv4_3512×28×28
      12conv4_4512×28×28
      13conv5_1512×14×14
      14conv5_2512×14×14
      15conv5_3512×14×14
      16conv5_4512×14×14
    • Table 2. Average classification accuracy comparison of three kinds of convolutional layer features under different K values

      View table

      Table 2. Average classification accuracy comparison of three kinds of convolutional layer features under different K values

      Layer typeUCMSIRI
      K=100K=500K=1000K=2000K=3000K=100K=500K=1000K=1500K=2000
      Middle layer90.1494.2494.6095.8995.4291.2293.4993.9194.5894.32
      Middle-high layer89.7695.1895.4295.9596.4989.4893.9694.5194.9195.16
      High layer88.8794.4694.9495.4294.8887.8092.1292.8893.6593.44
    • Table 3. Classification accuracies of several other features

      View table

      Table 3. Classification accuracies of several other features

      DatasetUCMSIRI
      FeatureHOGSIFTLBPCNN (6conv+2fc)HOGSIFTLBPCNN (6conv+2fc)
      Accuracy /%52.1458.3331.4363.1044.7953.9646.2560.42
    • Table 4. Classification accuracy comparison of many kinds of features

      View table

      Table 4. Classification accuracy comparison of many kinds of features

      No.FeatureAccuracy /%
      UCMSIRI
      1FC694.6093.54
      2conv4_196.9095.63
      3SIFT+HOG73.8167.92
      4SIFT+FC695.0095.00
      5GLDFB(conv4_1+FC6)97.6296.67
    • Table 5. Classification accuracy comparison on UCM dataset

      View table

      Table 5. Classification accuracy comparison on UCM dataset

      No.MethodAccuracy /%
      1RF44.77
      2SIFT+BoVW76.81
      3SPCK[4]77.38
      4VGG-19 (training from scratch)83.48
      5Resnet50 (training from scratch)85.71
      6CaffeNet[11]93.42±1.00
      7DCT-CNN[7]95.76
      8GLDFB97.62
    • Table 6. Classification accuracy comparison on SIRI dataset

      View table

      Table 6. Classification accuracy comparison on SIRI dataset

      No.MethodAccuracy /%
      1RF49.90
      2SIFT+BoVW75.63
      3SPMK[3]77.69±1.01
      4VGG-19(training from scratch)86.13
      5MeanStd-SIFI+LDA-H[17]86.29
      6Resnet50(training from scratch)89.26
      7GLDFB96.67
    • Table 7. Classification results of GLDFB with other pre-training CNNs

      View table

      Table 7. Classification results of GLDFB with other pre-training CNNs

      Pre-training modelLocal feature extraction layerAccuracy /%
      Local featureGlobal featureFused feature
      Alexnet[18]conv393.8195.2496.91
      Caffenet[19]conv394.0596.9097.62
      VGG-F[20]conv395.2496.1997.62
      VGG-M[20]conv395.0096.4397.62
      VGG-S[20]conv393.8196.4396.67
      VGG-16[14]conv4_195.0096.1995.95
      Resnet50[21]Res3a95.7196.9097.86
      Resnet101[21]Res3a95.2396.9097.86
    Tools

    Get Citation

    Copy Citation Text

    Xi Gong, Liang Wu, Zhong Xie, Zhanlong Chen, Yuanyuan Liu, Kan Yu. Classification Method of High-Resolution Remote Sensing Scenes Based on Fusion of Global and Local Deep Features[J]. Acta Optica Sinica, 2019, 39(3): 0301002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Aug. 29, 2018

    Accepted: Oct. 18, 2018

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201939.0301002

    Topics