Remote Sensing Technology and Application, Volume. 40, Issue 4, 1052(2025)
MApplication Progress and Prospect of Remote Sensing Technology in Soil Organic Matter Inversion and Mapping
[7] [7] BOWERS S A, HANKS R J. Reflection of radiant energy from soils[J]. Soil Science, 1965, 100(2): 130-138. DOI: 10.1097/00010694-196508000-00009
[8] [8] KRISHNAN P, ALEXANDER J D, BUTLER B J,et al. Reflectance technique for predicting soil organic matter[J]. Soil Science Society of America Journal, 1980, 44(6): 1282-1285. DOI: 10.2136/sssaj1980.03615995004400060030x
[9] [9] BAUMGARDNER M F, KRISTOF S, JOHANNSEN C J,et al. Effects of organic matter on the multispectral properties of soils[J]. Journal of Computer Chemistry Japan, 1970, 10(3): 105-108. DOI: 10.2477/jccj.H2310.
[10] [10] JENNY H. Factors of soil formation: A system of quantitative pedology[J]. Soil Science, 1941, 42(5): 415. DOI: 10.1134/S1064229309120138.
[11] [11] MCBRATNEY A B, MENDONA SANTOS M L, MINASNY B. On digital soil mapping[J]. Geoderma, 2003, 117(1/2): 3-52. DOI: 10.1016/S0016-7061(03)00223-4
[14] [14] HAMZEHPOUR N, SHAFIZADEH-MOGHADAM H, VALAVI R. Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture[J]. Catena, 2019, 182: 104141. DOI: 10.1016/j.catena.2019.104141
[19] [19] BOUASRIA A, NAMR K I, RAHIMI A,et al. Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks[J]. Geo-spatial Information Science, 2022, 25(3): 353-364. DOI: 10.1080/10095020.2022.2026743
[21] [21] SULEYMANOV A, GABBASOVA I, KOMISSAROV M,et al. Random forest modeling of soil properties in saline semi-arid areas[J]. Agriculture, 2023, 13(5): 976. DOI: 10.3390/agriculture13050976
[22] [22] ODEBIRI O, MUTANGA O, ODINDI J,et al. Modelling soil organic carbon stock distribution across different land-uses in South Africa: A remote sensing and deep learning approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 351-362. DOI: 10.1016/j.isprsjprs.2022.04.026
[25] [25] SUN Q Q, ZHANG P, JIAO X,et al. A remotely sensed framework for spatially-detailed dryland soil organic matter mapping: Coupled cross-wavelet transform with fractional vegetation and soil-related endmember time series[J]. Remote Sensing, 2022, 14(7): 1701. DOI: 10.3390/rs14071701
[26] [26] GUO L, FU P, SHI T Z,et al. Exploring influence factors in mapping soil organic carbon on low-relief agricultural lands using time series of remote sensing data[J]. Soil and Tillage Research, 2021, 210: 104982. DOI: 10.1016/j.still.2021.104982
[28] [28] WU J J, GAO Z H, LI Z Y,et al. Quantitative retrieval for soil organic matter in sandy land based on BJ-1 multispectral image[C]//Proceedings of the Remote Sensing of the Environment: 18th National Symposium on Remote Sensing of China. SPIE, 2014: 91580O. DOI: 10.1117/12.2063700
[32] [32] DINDAROLU T, KL M, GNAL E,et al. Multispectral UAV and satellite images for digital soil modeling with gradient descent boosting and artificial neural network[J]. Earth Science Informatics, 2022, 15(4): 2239-2263. DOI: 10.1007/s12145-022-00876-7
[40] [40] ANGELOPOULOU T, TZIOLAS N, BALAFOUTIS A,et al. Remote sensing techniques for soil organic carbon estimation: A review[J]. Remote Sensing, 2019, 11(6): 676. DOI: 10.3390/rs11060676
[47] [47] GUO L, SUN X R, FU P,et al. Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas[J]. Geoderma, 2021, 398: 115118. DOI: 10.1016/j.geoderma. 2021.115118
[48] [48] WANG X, LI L, LIU H J,et al. Prediction of soil organic matter using VNIR spectral parameters extracted from shape characteristics[J]. Soil and Tillage Research, 2022, 216: 105241. DOI: 10.1016/j.still.2021.105241
[49] [49] NANNI M R, DEMATT J A M, RODRIGUES M,et al. Mapping particle size and soil organic matter in tropical soil based on hyperspectral imaging and non-imaging sensors[J]. Remote Sensing, 2021, 13(9): 1782. DOI: 10.3390/rs13091782
[50] [50] CAO X S, LI X C, REN W J,et al. Hyperspectral estimation of soil organic matter content using grey relational local regression model[J]. Grey Systems: Theory and Application, 2021, 11(4): 707-722. DOI: 10.1108/gs-08-2020-0099
[53] [53] ANGELOPOULOU T, CHABRILLAT S, PIGNATTI S,et al. Evaluation of airborne HySpex and spaceborne PRISMA hyperspectral remote sensing data for soil organic matter and carbonates estimation[J]. Remote Sensing, 2023, 15(4): 1106. DOI: 10.3390/rs15041106
[56] [56] GU X H, WANG Y C, SUN Q,et al. Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform[J]. Computers and Electronics in Agriculture, 2019, 167: 105053. DOI: 10.1016/j.compag.2019.105053
[57] [57] JIN X L, DU J, LIU H J,et al. Remote estimation of soil organic matter content in the Sanjiang Plain, Northest China: The optimal band algorithm versus the GRA-ANN model[J]. Agricultural and Forest Meteorology, 2016, 218: 250-260. DOI: 10.1016/j.agrformet.2015.12.062
[58] [58] WANG X, LI L, LIU H J,et al. Prediction of soil organic matter using VNIR spectral parameters extracted from shape characteristics[J]. Soil and Tillage Research, 2022, 216: 105241. DOI: 10.1016/j.still.2021.105241
[61] [61] PANAGOS P, MEUSBURGER K, BALLABIO C,et al. Soil erodibility in Europe: A high-resolution dataset based on LUCAS[J]. Science of The Total Environment, 2014, 479: 189-200. DOI: 10.1016/j.scitotenv.2014.02.010
[62] [62] STEVENS A, NOCITA M, TTH G,et al. Prediction of soil organic carbon at the European scale by visible and near InfraRed reflectance spectroscopy[J]. PLoS One, 2013, 8(6): e66409. DOI: 10.1371/journal.pone.0066409
[63] [63] BALLABIO C, PANAGOS P, MONATANARELLA L. Mapping topsoil physical properties at European scale using the LUCAS database[J]. Geoderma, 2016, 261: 110-123. DOI: 10.1016/j.geoderma.2015.07.006
[64] [64] ORGIAZZI A, BALLABIO C, PANAGOS P,et al. LUCAS Soil, the largest expandable soil dataset for Europe: A review[J]. European Journal of Soil Science, 2018, 69(1): 140-153. DOI: 10.1111/ejss.12499
[65] [65] QIAO H L, SHI X B, CHEN H Z,et al. Effective prediction of soil organic matter by deep SVD concatenation using FTNIR spectroscopy[J]. Soil and Tillage Research, 2022, 215: 105223. DOI: 10.1016/j.still.2021.105223
[70] [70] GUO Y K, ZENG F, DING M Q,et al. Research on SPOT-5 image-based soil organic matter content estimation[J]. Applied Mechanics and Materials, 2013, 409/410: 246-251. DOI: 10.4028/www.scientific.net/amm.409-410.246
[74] [74] GUO L, ZHAO C, ZHANG H T,et al. Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology[J]. Geoderma, 2017, 285: 280-292. DOI: 10.1016/j.geoderma.2016.10.010
[75] [75] ABDOLI P, KHANMIRZAEI A, HAMZEH S,et al. Use of remote sensing data to predict soil organic carbon in some agricultural soils of Iran[J]. Remote Sensing Applications: Society and Environment, 2023, 30: 100969. DOI: 10.1016/j.rsase.2023.100969
[90] [90] CHEN D, CHANG N J, XIAO J F,et al. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms[J]. Science of The Total Environment, 2019, 669: 844-855. DOI: 10.1016/j.scitotenv.2019.03.151
[93] [93] ZHANG M W, HAO C K, WANG X Q,et al. Application of generalized linear geostatistical model for regional soil organic matter mapping: The effect of sampling density[J]. Geoderma, 2023, 433: 116446. DOI: 10.1016/j.geoderma.2023.116446
[94] [94] HE S F, SHEN L M, XIE H X. Hyperspectral estimation model of soil organic matter content using generative adversarial networks[J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1905-1911. DOI: 10.3964/j.issn.1000-0593(2021)06-1905-07
[97] [97] CAO X S, LI X C, REN W J,et al. Hyperspectral estimation of soil organic matter content using grey relational local regression model[J]. Grey Systems: Theory and Application, 2021, 11(4): 707-722. DOI: 10.1108/gs-08-2020-0099
[112] [112] MIRZAEE S, GHORBANI-DASHTAKI S, MOHAMMADI J,et al. Spatial variability of soil organic matter using remote sensing data[J]. Catena, 2016, 145: 118-127. DOI: 10.1016/j.catena.2016.05.023
Get Citation
Copy Citation Text
SHI Ming, SHI Yang, LIN Fei, JING Xia, HU Yimin, LI Bingyu. MApplication Progress and Prospect of Remote Sensing Technology in Soil Organic Matter Inversion and Mapping[J]. Remote Sensing Technology and Application, 2025, 40(4): 1052
Received: Jul. 26, 2024
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: HU Yimin (ymhu@iim.ac.cn)