Journal of Semiconductors, Volume. 40, Issue 5, 052701(2019)
Realizing super-long Cu2O nanowires arrays for high-efficient water splitting applications with a convenient approach
[1] A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37(1972).
[2] M Ni, M K H Leung, D Y C Leung et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev, 11, 401(2007).
[3] Z Zou, J Ye, K Sayama et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414, 625(2001).
[4] S U M Khan, M Al-Shahry, W B Ingler. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297, 2243(2002).
[5] M G Walter, E L Warren, J R McKone et al. Solar water splitting cells. Chem Rev, 110, 6446(2010).
[6] A J Bard, M A Fox. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res, 28, 141(1995).
[7] A Kudo, Y Miseki. Heterogeneous photocatalyst materials for water splitting. Chem Rev, 38, 253(2009).
[8] X Chen, S Shen, L Guo et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 110, 6503(2010).
[9] R Liu, Z Zheng, J Spurgeon et al. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ Sci, 7, 2504(2014).
[10] S J A Moniz, S A Shevlin, D J Martin et al. Visible-light driven heterojunctionphotocatalysts for water splitting-a critical review. Energy Environ Sci, 8, 731(2015).
[11] D Cao, C Wang, F Zheng et al. High-efficiency ferroelectric-film solar cells with an n-type Cu2O cathode buffer layer. Nano Lett, 12, 2803(2012).
[12] M Hara, T Kondo, M Komoda et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun, 3, 357(1998).
[13] C Xiang, G M Kimball, R L Grimm et al. 820 mV open-circuit voltages from Cu2O/CH3CN junctions. Energy Environ Sci, 4, 1311(2011).
[14] A Paracchino, V Laporte, K Sivula et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater, 10, 456(2011).
[15] D Cao, N Nasori, Z Wang. Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response. Appl Catal B, 198, 398(2016).
[16] G Ghadimkhani, N R de Tacconi, W Chanmanee et al. Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays. Chem Commun, 49, 1297(2013).
[17] M Cao, C Hu, Y Wang et al. A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem Commun, 1, 1884(2003).
[18] Y Tan, X Xue, Q Peng et al. Controllable fabrication and electrical performance of single crystalline cu2o nanowires with high aspect ratios. Nano Lett, 7, 3723(2007).
[19] J Zhang, J Liu, Q Peng et al. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater, 18, 867(2006).
[20] Y Ben-Shahar, K Vinokurov, H de Paz-Simon et al. Photoelectrochemistry of colloidal Cu2O nanocrystal layers: the role of interfacial chemistry. J Mater Chem A, 5, 22255(2017).
[21] D P Singh, N R Neti, A S K Sinha et al. Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper. J Phys Chem C, 111, 1638(2007).
[22] Z Wang, D Cao, R Xu et al. Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy, 19, 328(2016).
[23] Y Lei, L D Zhang, G W Meng et al. Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett, 78, 1125(2001).
[24] Y Lei, W Cai, G Wilde. Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks. Prog Mater Sci, 52, 465(2007).
[25] Y Lei, S Yang, M Wu et al. Surface patterning using templates: concept, properties and device applications. Chem Soc Rev, 40, 1247(2011).
[26] H Azimi, S Kuhri, A Osvet et al. Effective ligand passivation of Cu2O nanoparticles through solid-state treatment with mercaptopropionic acid. J Am Chem Soc, 136, 7233(2014).
[27] M Law, L E Greene, J C Johnson et al. Nanowire dye-sensitized solar cells. Nat Mater, 4, 455(2005).
[28] P J Pauzauskie, P Yang. Nanowire photonics. Mater Today, 9, 36(2006).
[29] H Sun, J Deng, L Qiu et al. Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ Sci, 8, 1139-1159(2015).
[30] Q Zhang, G Cao. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today, 6, 91(2011).
[31] F G Zheng, P Zhang, X F Wang et al. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film. Nanoscale, 6, 2915(2014).
[32] A Ibhadon, P Fitzpatrick. Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3, 189-218(2013).
[33] P V Kamat. Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett, 1, 520(2010).
[34] I Oh, J Kye, S Hwang. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett, 12, 298(2012).
[35]
Get Citation
Copy Citation Text
Nasori Nasori, Tianyi Dai, Xiaohao Jia, Agus Rubiyanto, Dawei Cao, Shengchun Qu, Zhanguo Wang, Zhijie Wang, Yong Lei. Realizing super-long Cu2O nanowires arrays for high-efficient water splitting applications with a convenient approach[J]. Journal of Semiconductors, 2019, 40(5): 052701
Category: Articles
Received: Feb. 15, 2019
Accepted: --
Published Online: Sep. 18, 2021
The Author Email: