Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1659(2022)
Research Progress and Application of Magneto-Optical Thin Films Based on RIG
[1] [1] DILLON J F. Origin and uses of the faraday rotation in magnetic crystals[J]. Journal of Applied Physics, 1968, 39(2): 922-929.
[2] [2] ADAM J D, DAVIS L E, DIONNE G F, et al. Ferrite devices and materials[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 721-737.
[3] [3] ELDADA L. Optical communication components[J]. Review of Scientific Instruments, 2004, 75(3): 575-593.
[4] [4] SUKHORUKOV Y P, TELEGIN A V, BEBENIN N G, et al. Strain-magneto-optics in CoFe2O4: magneto-absorption in voight geometry[J]. Journal of Applied Physics, 2020, 128(19): 195103.
[6] [6] KANAI T, OHKOSHI S I, HASHIMOTO K. Magnetic, electric, and optical functionalities of (PLZT)x(BiFeO3)1-x ferroelectric-ferromagnetic thin films[J]. Journal of Physics and Chemistry of Solids, 2003, 64(3): 391-397.
[7] [7] FRATELLO V J, SLUSKY S E G, BRANDLE C D, et al. Growth-induced anisotropy in bismuth: rare-earth iron garnets[J]. Journal of Applied Physics, 1986, 60(7): 2488-2497.
[8] [8] KUM H, LEE D, KONG W, et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices [J]. Nature Electronics, 2019, 2(10): 439-450.
[9] [9] SRINIVASAN K, STADLER B J H. Review of integrated magneto-optical isolators with rare-earth iron garnets for polarization diverse and magnet-free isolation in silicon photonics[J]. Optical Materials Express, 2022,12(2):697-716.
[10] [10] HARRIS V G. Modern microwave ferrites[J]. IEEE Transactions on Magnetics, 2012, 48(3): 1075-1104.
[12] [12] DORSEY P C, BUSHNELL S E, SEED R G, et al. Epitaxial yttrium iron garnet films grown by pulsed laser deposition[J]. Journal of Applied Physics, 1993, 74(2): 1242-1246.
[13] [13] LIU Y, ZHOU P, REGMI S, et al. Strain induced anisotropy in liquid phase epitaxy grown nickel ferrite on magnesium gallate substrates[J]. Scientific Reports, 2022,12(1): 7052
[14] [14] PUSHKAREV A S, PUSHKAREVA I V, GRIGORIEV S A, et al. Electrocatalytic layers modified by reduced graphene oxide for PEM fuel cells[J]. International Journal of Hydrogen Energy, 2015,40(42): 14492-14497
[15] [15] SUN Y Y, SONG Y Y, CHANG H C, et al. Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films[J]. Applied Physics Letters, 2012, 101(15): 152405.
[16] [16] D′ALLIVY KELLY O, ANANE A, BERNARD R, et al. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system[J]. Applied Physics Letters, 2013, 103(8): 082408.
[17] [17] ONBASLI M C, KEHLBERGER A, KIM D H, et al. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization[J]. APL Materials, 2014, 2(10): 106102.
[18] [18] HOWE B M, EMORI S, JEON H M, et al. Pseudomorphic yttrium iron garnet thin films with low damping and inhomogeneous linewidth broadening[J]. IEEE Magnetics Letters, 2015, 6: 1-4.
[19] [19] TANG C, ALDOSARY M, JIANG Z L, et al. Exquisite growth control and magnetic properties of yttrium iron garnet thin films[J]. Applied Physics Letters, 2016, 108(10): 102403.
[20] [20] HAUSER C, RICHTER T, HOMONNAY N, et al. Yttrium iron garnet thin films with very low damping obtained by recrystallization of amorphous material[J]. Scientific Reports, 2016, 6: 20827.
[21] [21] HAUSER C, EISENSCHMIDT C, RICHTER T, et al. Annealing of amorphous yttrium iron garnet thin films in argon atmosphere[J]. Journal of Applied Physics, 2017, 122(8): 083908.
[22] [22] KRNER T, HEINRICH A, WECKERLE M, et al. Integration of magneto-optical active bismuth iron garnet on nongarnet substrates[J]. Journal of Applied Physics, 2008, 103(7): 07B337.
[23] [23] BI L, HU J J, JIANG P, et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators[J]. Nature Photonics, 2011, 5(12): 758-762.
[24] [24] ONBASLI M C, GOTO T, SUN X Y, et al. Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates[J]. Optics Express, 2014, 22(21): 25183-25192.
[25] [25] SUN X Y, DU Q Y, GOTO T, et al. Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation[J]. ACS Photonics, 2015, 2(7): 856-863.
[26] [26] FAKHRUL T, TAZLARU S, KHURANA B, et al. High figure of merit magneto-optical Ce- and Bi-substituted terbium iron garnet films integrated on Si[J]. Advanced Optical Materials, 2021, 9(16): 2100512.
[27] [27] HANSEN P, KLAGES C, SCHULDT J, et al. Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films[J]. Physical Review B, Condensed Matter, 1985, 31(9): 5858-5864.
[28] [28] SYVOROTKA I I, SYVOROTKA I M, UBIZSKII S B. Thick epitaxial YIG films with narrow FMR linewidth[J]. Solid State Phenomena, 2013, 200: 250-255.
[29] [29] SYVOROTKA I I, SYVOROTKA I M, KITYK I V. Surface morphological changes and magnetic properties of Sc-substituted Y3Fe5O12 epitaxial films deposited on the GGG substrate[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(21): 3314-3319.
[30] [30] SYVOROTKA I I, VETOSHKO P M, SKIDANOV V A, et al. In-plane transverse susceptibility of (111)-oriented iron garnet films[J]. IEEE Transactions on Magnetics, 2015, 51(1): 1-3.
[31] [31] FU J B, HUA M X, WEN X, et al. Epitaxial growth of Y3Fe5O12 thin films with perpendicular magnetic anisotropy[J]. Applied Physics Letters, 2017, 110(20): 202403.
[32] [32] HELSETH L E, HANSEN R W, IL′YASHENKO E I, et al. Faraday rotation spectra of bismuth-substituted ferrite garnet films with in-plane magnetization[J]. Physical Review B, 2001, 64(17): 174406.
[33] [33] HUANG M, XU Z C. Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications[J]. Thin Solid Films, 2004, 450(2): 324-328.
[34] [34] CUOMO J J, SADAGOPAN V, DELUCA J, et al. Growth of uniaxial magnetic garnet films by RF sputtering[J]. Applied Physics Letters, 1972, 21(12): 581-584.
[35] [35] SUNG S Y, QI X Y, STADLER B J H. Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability[J]. Applied Physics Letters, 2005, 87(12): 121111.
[36] [36] KANG Y M, WEE S H, BAIK S I, et al. Magnetic properties of YIG (Y3Fe5O12) thin films prepared by the post annealing of amorphous films deposited by rf-magnetron sputtering[J]. Journal of Applied Physics, 2005, 97(10): 10A319.
[38] [38] BLOCK A D, DULAL P, STADLER B J H, et al. Growth parameters of fully crystallized YIG, Bi∶YIG, and Ce∶YIG films with high faraday rotations[J]. IEEE Photonics Journal, 2014, 6(1): 1-8.
[39] [39] DULAL P, BLOCK A D, GAGE T E, et al. Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality[J]. ACS Photonics, 2016, 3(10): 1818-1825.
[40] [40] SRINIVASAN K, RADU C, BILARDELLO D, et al. Interfacial and bulk magnetic properties of stoichiometric cerium doped terbium iron garnet polycrystalline thin films[J]. Advanced Functional Materials, 2020, 30(15): 2000409.
[41] [41] KARPOV M, PFEIFFER M H P, LIU J Q, et al. Photonic chip-based soliton frequency combs covering the biological imaging window[J]. Nature Communications, 2018, 9: 1146.
[42] [42] MARPAUNG D, ROELOFFZEN C, HEIDEMAN R, et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 2013, 7(4): 506-538.
[43] [43] JALAS D, PETROV A, EICH M, et al. What is—and what is not—an optical isolator[J]. Nature Photonics, 2013, 7(8): 579-582.
[44] [44] LIU Q, GROSS S, DEKKER P, et al. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass[J]. Optics Express, 2014, 22(23): 28037-28051.
[45] [45] YAMAMOTO S, MAKIMOTO T. Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics[J]. Journal of Applied Physics, 1974, 45(2): 882-888.
[46] [46] AURACHER F, WITTE H H. A new design for an integrated optical isolator[J]. Optics Communications, 1975, 13(4): 435-438.
[47] [47] YOKOI H, MIZUMOTO T, SHOJI Y. Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding[J]. Applied Optics, 2003, 42(33): 6605-6612.
[48] [48] SHOJI Y, MIZUMOTO T, YOKOI H, et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding[J]. Applied Physics Letters, 2008, 92(7): 071117.
[49] [49] ZHANG Y, DU Q Y, WANG C T, et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics[J]. Optica, 2019, 6(4): 473-478.
[50] [50] BUHAY H, ADAM J D, DANIEL M R, et al. Thick yttrium-iron-garnet (YIG) films produced by pulsed laser deposition (PLD) for integration applications[J]. IEEE Transactions on Magnetics, 1995, 31(6): 3832-3834.
[51] [51] OLIVER S A, ZAVRACKY P M, MCGRUER N E, et al. A monolithic single-crystal yttrium iron garnet/silicon X-band circulator[J]. IEEE Microwave and Guided Wave Letters, 1997, 7(8): 239-241.
[52] [52] YOON S D, WANG J W, SUN N, et al. Ferrite-coupled line circulator simulations for application at X-band frequency[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2639-2641.
[53] [53] ZAHWE O, ABDEL SAMAD B, SAUVIAC B, et al. YIG thin film used to miniaturize a coplanar junction circulator[J]. Journal of Electromagnetic Waves and Applications, 2010, 24(1): 25-32.
[54] [54] YAN W, YANG Y C, LIU S Y, et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms[J]. Optica, 2020, 7(11): 1555.
Get Citation
Copy Citation Text
ZHU Senyin, ZHANG Hanxu, WANG Xianjie, HUANG Zhanjun, SONG Bo. Research Progress and Application of Magneto-Optical Thin Films Based on RIG[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1659
Category:
Received: Apr. 15, 2022
Accepted: --
Published Online: Nov. 18, 2022
The Author Email: ZHU Senyin (21S011018@stu.hit.edu.cn)
CSTR:32186.14.