Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 12, 1736(2023)

Satellite pose estimation method based on space carving and self-attention

Jing-he LIU1,2 and Bao-jun LIN1,2,3、*
Author Affiliations
  • 1Innovation Academy for Microsatellite,Chinese Academy of Science,Shanghai 201203,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Aerospace Information Research Institute,Chinese Academy of Science,Beijing 100049,China
  • show less
    Figures & Tables(10)
    Point cloud reconstruction
    Pipeline of generating mask for training set
    Flowchart of the pose estimation algorithm
    Structure of neural network
    Selected 11 landmarks
    Transformation between satellite body reference and camera reference
    Accuracy of landmark localization
    Randomly selected images with the predicted segmentation of the satellite and the landmarks
    Same test images in Fig.8 with the predicted poses shown as the satellite coordinates
    • Table 1. Performance comparison of different algorithms

      View table
      View in Article

      Table 1. Performance comparison of different algorithms

      算法关键点定位精度/%姿态误差
      平移误差/%旋转误差/(rad×10-3
      一阶段T6d-Direct 9-0.54123.01
      PoseNet 13-0.45218.90
      Ref.[10-0.61927.22
      Ref.[11-0.70830.60
      二阶段YOLO-6D 1486.70.43318.07
      Ref.[1789.60.32613.04
      PVNet 1588.30.28512.43
      Ours92.00.2369.86
    Tools

    Get Citation

    Copy Citation Text

    Jing-he LIU, Bao-jun LIN. Satellite pose estimation method based on space carving and self-attention[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(12): 1736

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 1, 2023

    Accepted: --

    Published Online: Mar. 7, 2024

    The Author Email: Bao-jun LIN (linbaojun@aoe.ac.cn)

    DOI:10.37188/CJLCD.2023-0080

    Topics