Infrared and Laser Engineering, Volume. 50, Issue 4, 20200447(2021)
Graphene quantum dots/ZnO nanowires composites for efficient ultraviolet sensing
[1] Nasiri N, Bo R, Hung T F, et al. Tunable band-selective UV-photodetectors by 3D self-assembly of heterogeneous nanoparticle networks[J]. Advanced Functional Materials, 26, 7359-7366(2016).
[2] Chen H, Liu K, Hu L, et al. New concept ultraviolet photodetectors[J]. Materials Today, 18, 493-502(2015).
[3] Jiang Haitao, Liu Shibin, He Peipei, et al. The laterial growth of ZnO nanowires network based on the micro-electrode[J]. Rare Metal Materials and Engineering, 46, 3213-3216(2017).
[4] Peng L, Hu L, Fang X. Low-dimensional nanostructure ultravio-let photodetectors[J]. Advanced Materials, 25, 5321-5328(2013).
[5] Jiang H, Liu S, Yuan Q. Synergistic effect of hybrid nanodia-mond/ZnO nanowires for improved ultraviolet photore-sponse[J]. Infrared and Laser Engineering, 48, 0120004(2019).
[6] Li X, Gao C, Duan H, et al. High‐performance photoelectro-chemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure[J]. Small, 9, 2005-2011(2013).
[7] Xie Y, Wei L, Wei G, et al. A self-powered UV photodetector based on TiO2 nanorod arrays[J]. Nanoscale Research Letters, 8, 188(2013).
[8] Fang X, Hu L, Huo K, et al. New ultraviolet photodetector based on individual Nb2O5 nanobelts[J]. Advanced Functional Ma-terials, 21, 3907-3915(2011).
[9] Liu H, Zhang Z, Hu L, et al. New UV‐a photodetector based on individual potassium niobate nanowires with high perfor-mance[J]. Advanced Optical Materials, 2, 771-778(2014).
[10] Djurišić A B, Ng A M C, Chen X Y. ZnO nanostructures for optoelectronics: material properties and device applications[J]. Progress in Quantum Electronics, 34, 191-259(2010).
[11] Wang Z, Yu R, Wang X, et al. Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect[J]. Advanced Materials, 28, 6880-6886(2016).
[12] Dai W, Pan X, Chen S, et al. Honeycomb-like NiO/ZnO hetero-structured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance[J]. Journal of Materials Chemistry C, 2, 4606-4614(2014).
[13] Chen T P, Hung F Y, Chang S P, et al. Optoelectronic properties of thermally evaporated ZnO films with nanowalls on glass substrates[J]. Applied Physics Express, 6, 045201(2013).
[14] Xu Q, Cheng Q, Zhong J, et al. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene lay-er[J]. Nanotechnology, 25, 055501(2014).
[15] Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 7, 1003(2007).
[16] Wang Z, Zhan X, Wang Y, et al. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures[J]. Na-noscale, 4, 2678-2684(2012).
[17] Ghosh D, Kapri S, Bhattacharyya S. Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bond-ing[J]. ACS Applied Materials & Interfaces, acsami.6b13037(2016).
Get Citation
Copy Citation Text
Yu Fan, Qianqian Yuan, Haitao Jiang, Shibin Liu. Graphene quantum dots/ZnO nanowires composites for efficient ultraviolet sensing[J]. Infrared and Laser Engineering, 2021, 50(4): 20200447
Category: Lasers & Laser optics
Received: Nov. 23, 2020
Accepted: --
Published Online: Jul. 30, 2021
The Author Email: