Chinese Journal of Lasers, Volume. 40, Issue 8, 803006(2013)
Experimental Study on Improving High-Cycle Fatigue Performance of TC11 Titanium alloy by Laser Shock Peening
[1] [1] R Fabbro, J Fournier, P Ballard, et al.. Physical study of laser-produced plasma in confined geometry[J]. J Appl Phy, 1990, 68(2): 775-784.
[2] [2] Charles S Montross, Tao Wei, Lin Ye, et al.. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International J Fatigue, 2002, 24(10): 1021-1036.
[4] [4] P Peyre, R Fabbro, P Merrien, et al.. Laser shock processing of aluminium alloys: application to high cycle fatigue behavior[J]. Materials Science and Engineering A, 1996, 210(1-2): 102-113.
[5] [5] Zhou Lei, He Weifeng, Wang Xuede. Effect of laser shock processing on high cycle properties of 1Cr11Ni2W2MoV stainless steel[J]. Rare Materials and Engineering, 2011, 40(s4): 174-177.
[6] [6] Hyuntaeck Lim, Pilkyu Kim, Hoemin Jeong, et al.. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. J Materials Processing Technology, 2012, 212(6): 1347-1354.
[7] [7] W. Sagawaa, T. Aokib, T. Itoua, et al.. Stress corrosion cracking countermeasure observed on Ni-based alloy welds of BWR core support structure[J]. Nuclear Engineering and Design, 2009, 239(4): 655-664.
[14] [14] Wang Cheng, Ren Xudong, Zhou Xin, et al.. Influence of laser shock processing on short crack growth of GH742 nickel-base alloy[J]. Heat Treatment of Metals, 2009, 34(7): 57-60.
[15] [15] He Weifeng, Li Yinghong, Li Wei, et al.. Laser shock peening on vibration fatigue behavior of compressor blade[J]. J Aerospace Power, 2011, 26(7): 1551-1556.
[16] [16] J Z Lu, K Y Luo, Y K Zhang, et al.. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362.
[17] [17] J Z Lu, K Y Luo, Y K Zhang, et al.. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.
[18] [18] “Aeronautical Manufacture Engineering Handbook” Edits Committee. Aeronautical Manufacture Engineering Handbook[M]. Beijing: Aerospace Industry Press, 1997. 235-237.
[19] [19] Wang Xuede, Li Yinghong, Li Qipeng, et al.. Property and thermostablity study on TC6 titanium alloy nanostructure processed by LSP[J]. Journal of Nanjing University of Aeronautics & Atronautics, 2012, 29(1): 68-76.
[20] [20] Xiangfan Nie, Weifeng He, Liucheng Zhou, et al.. Effects of laser shock peening on TC11 titanium alloy with different impacts[J]. Advance Materials Research, 2013, 681: 266-270.
[21] [21] Zhou Lei, He Weifeng, Wang Xuede. Effect of laser shock processing on high cycle properties of 1Cr11Ni2W2MoV stainless steel[J]. Rare Materials and Engineering, 2011, 40(s4): 174-177.
[22] [22] Zhou Lei, Li Yinghong, Zhai Xusheng, et al.. Fatigue-life improvement of symmetrical pressure hole by laser shock processing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3): 379-382.
[23] [23] Ma Zhuang. Fundamental Research on Laser Shock Processing Used on Aero-Engine Parts[D]. Xi′an: Engineering Institute of Air Force University, 2008. 37-38.
[24] [24] N E Frost, K J Marsh, L P Pook. Metal Fatigue[M]. London: Oxford Univ Press, 1974. 130-195.
Get Citation
Copy Citation Text
Nie Xiangfan, He Weifeng, Zang Shunlai, Wang Xuede, Li Yuqin. Experimental Study on Improving High-Cycle Fatigue Performance of TC11 Titanium alloy by Laser Shock Peening[J]. Chinese Journal of Lasers, 2013, 40(8): 803006
Category: laser manufacturing
Received: Feb. 4, 2013
Accepted: --
Published Online: Jul. 26, 2013
The Author Email: Xiangfan Nie (skingkgd@163.com)