Acta Laser Biology Sinica, Volume. 28, Issue 5, 385(2019)
Advances in Applications and Research of Xanthan Gum
[1] [1] MARGARITIS A, ZAJIC J E. Mixing, mass transfer, and scale-up of polysaccharide fermentations[J]. Biotechnology and Bioengineering, 1978, 20(7): 939-1001.
[2] [2] VAUTERIN L. Reclassification of Xanthomonas[J]. International Journal of Systematic Bacteriology, 1995, 45(3): 472-489.
[3] [3] RADEMAKER J L W, LOUWS F J, SCHULTZ M H, et al. A comprehensive species to strain taxonomic framework for Xanthomonas[J]. Phytopathology, 2005, 95(9): 1098-1111.
[4] [4] JANSSON P E, KENNE L, LINDBERG B. Structure of the extracellular polysaccharide from Xanthomonas campestris[J]. Carbohydrate Research, 1975, 45(1): 275-282.
[5] [5] ROSALAM S, ENGLAND R. Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp.[J]. Enzyme and Microbial Technology, 2006, 39(2): 197-207.
[6] [6] BIANCO M I, TOUM L, YARYURA P M, et al. Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris[J]. Molecular Plant-Microbe Interactions, 2016, 29(9): 688.
[7] [7] MOORHOUSE R, WALKINSHAW M D, ARNOTT S. Xanthan gum-molecular conformation and interactions[J]. ACS Symposium Series, 1977, 45(8): 90-102.
[8] [8] CHEETHAM N W H, MASHIMBA E N M. Proton and carbon-13 NMR studies on xanthan derivatives[J]. Carbohydrate Polymers, 1992, 17(2): 127-136.
[9] [9] GAMINI A, MANDEL M. Physicochemical properties of aqueous xanthan solutions: static light scattering[J]. Biopolymers, 1994, 34(6): 783-797.
[10] [10] HJERDE T, KRISTIANSEN T S, STOKKE B T, et al. Conformation dependent depolymerisation kinetics of polysaccharides studied by viscosity measurements[J]. Carbohydrate Polymers, 1994, 24(4): 265-275.
[11] [11] STOKKE B T, CHRISTENSEN B E. Release of disordered xanthan oligomers upon partial acid hydrolysis of double-stranded xanthan[J]. Food Hydrocolloids, 1996, 10(1): 83-89.
[12] [12] GUO Rui, DING Enyong. Structure performance and applications of xanthan gum[J]. China Surfactant Detergent and Cosmetics, 2006, 36(1): 42-45.
[13] [13] KATZBAUER B. Properties and applications of xanthan gum[J]. Polymer Degradation & Stability, 1998, 59(1-3): 81-84.
[14] [14] CUVELIER G, LAUNAY B. Concentration regimes in xanthan gum solutions deduced from flow and viscoelastic properties[J]. Carbohydrate Polymers, 1986, 6(5): 321-333.
[15] [15] TAKO M, NAKAMURA S. Rheological properties of deacetylated xanthan in aqueous media[J]. Agricultural and Biological Chemistry, 1984, 48(12): 2987-2993.
[16] [16] BRADSHAW I J, NISBET B A, KERR M H,et al. Modified xanthan-its preparation and viscosity[J]. Carbohydrate Polymers, 1983, 3(1): 23-38.
[17] [17] ZHAO Zhengtao, WANG Xiuju, AN Xin,et al. Rheological characteristic of xanthan gum and its synergistic characteristics[J]. China Food Additives, 2009(6): 76-81.
[18] [18] TAKO M. Synergistic interaction between deacylated xanthan and galactomannan[J].Journal of Carbohydrate Chemistry, 1991, 10(4): 619-633.
[19] [19] ZHAN D F, RIDOUT M J, BROWNSEY G J, et al. Xanthan-locust bean gum interactions and gelation[J]. Carbohydrate Polymers, 1993, 21(1): 53-58.
[20] [20] IELPI L, COUSO R O, DANKERT M A. Pyruvic acid acetal residues are transferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid[J]. Biochemical and Biophysical Research Communications, 1981, 102(4): 1400-1408.
[21] [21] IELPI L, COUSO R O, DANKERT M A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris[J]. Journal of Bacteriology, 1993, 175(9): 2490-2500.
[22] [22] BECKER A, KATZEN F, PHLER A, et al. Xanthan gum biosynthesis and application: a biochemical/genetic perspective[J]. Applied Microbiology and Biotechnology, 1998, 50(2): 145-152.
[23] [23] FREITAS F, ALVES V D, REIS M A M. Advances in bacterial exopolysaccharides: from production to biotechnological applications[J]. Trends in Biotechnology, 2011, 29(8): 388-398.
[24] [24] ANKE B. Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways[J]. Frontiers in Microbiology, 2015, 6: 687.
[25] [25] VORHLTER F J, SCHEIKER S, GOESMANN A, et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis[J]. Journal of Biotechnology, 2008, 134(1): 33-45.
[26] [26] CRECY-LAGARD V D, GLASER P, LEJEUNE P, et al. A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity[J]. Journal of Bacteriology, 1990, 172(10): 5877-5883.
[27] [27] ZHANG L H. A novel C-di-GMP effector linking intracellular virulence regulon to quorum sensing and hypoxia sensing[J]. Virulence, 2010, 1(5): 391-394.
[28] [28] CHIN K H, LEE Y C, TU Z L, et al. The cAMP receptor-like protein Clpis a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris[J]. Journal of Molecular Biology, 2010, 396(3): 646-662.
[29] [29] TAO F, HE Y W, WU D H, et al. The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors[J]. Journal of Bacteriology, 2010, 192(4): 1020-1029.
[30] [30] TANG J L, LIU Y N, BARBER C E, et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris[J]. Molecular Genetics and Genomics, 1991, 226(3): 409-417.
[31] [31] WILSON T J, BERTRAND N, TANG J L, et al. The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase[J]. Molecular Microbiology, 2010, 28(5): 961-970.
[32] [32] DOW J M, FENG J X, BARBER C E, et al. Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris[J]. Microbiology, 2000, 146(4): 885-891.
[33] [33] ZHOU L, ZHANG L H, CMARA M, et al. DSF family of quorum sensing signals: diversity, biosynthesis, and turnover[J]. Trends in Microbiology, 2017, 25(4): 293.
[34] [34] BARBER C E, TANG J L, FENG J X, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule[J]. Molecular Microbiology, 1997, 24(3): 555-566.
[35] [35] HE Y W, WANG C, ZHOU L, et al. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction[J]. Journal of Biological Chemistry, 2006, 281(44): 33414-33421.
[36] [36] HE Y W, NG Y J, XU M, et al. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network[J]. Molecular Microbiology, 2010, 64(2): 281-292.
[37] [37] WANG X Y, ZHOU L, YANG J, et al. The rpfB-dependent quorum sensing signal turnover system is required for adaptation and virulence in rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae[J]. Molecular Plant-microbe Interactions, 2015, 29(3): 220-230.
[38] [38] ZHOU L, WANG X Y, SUN S, et al. Identification and characterization of naturally occurring DSF-family quorum sensing signal turnover system in the phytopathogen Xanthomonas[J]. Environmental Microbiology, 2015, 17(11): 4646-4658.
[39] [39] XUE D R, TIAN F, YANG F H, et al., Phosphodiesterase EdpX1 promotes Xanthomonas oryzae pv. oryzae virulence, exopolysaccharide production, and biofilm formation[J]. Applied and Environmental Microbiology, 2018, 84(22): e01717-e01718.
[40] [40] SU J, ZOU X, HUANG L, et al. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice[J]. Scientific Reports, 2016, 6(1): 25978.
[41] [41] TAO J, HE C. Response regulator, VemR, positively regulates the virulence and adaptation of Xanthomonas campestris pv. campestris[J]. FEMS Microbiology Letters, 2010, 304(1): 20-28.
[42] [42] SU H Z, WU L, QI Y H, et al. Characterization of the GntR family regulator HpaR1 of the crucifer black rot pathogen Xanthomonas campestris pathovar campestris[J]. Scientific Reports, 2016, 6(1): 19862.
[43] [43] SCHULTE F, LEBMEIER L, VOSS J, et al. Regulatory associations between the metabolism of sulfur-containing amino acids and xanthan biosynthesis in Xanthomonas campestris pv. campestris B100[J]. FEMS Microbiol Letters, 2019, 366(2): fnz005.
[44] [44] QIAN G, ZHANG Y, ZHOU Y, et al. Epv, encoding a hypothetical protein, is regulated by DSF-mediating quorum sensing as well as global regulator Clp and is required for optimal virulence in Xanthomonas oryzae pv. oryzicola[J]. Phytopathology, 2012, 102(9): 841-847.
[45] [45] NGUYEN M P, PARK J, CHO M H, et al. Role of DetR in defense is critical for virulence of Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2016, 17(4): 601-613.
[46] [46] YANG F, QIAN S, TIAN F, et al. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production, and virulence in Xanthomonas oryzae pv. oryzae[J]. Journal of Applied Microbiology, 2016, 120(6): 1646-1657.
[47] [47] TANG D J, LI X J, HE Y Q, et al. Zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris[J]. Molecular Plant-MicrobeInteractions, 2005, 18(7): 652-658.
[48] [48] YANG W, LIU Y, CHEN L, et al. Zinc uptake regulator (zur)gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv.oryzae in rice[J]. Current Microbiology, 2007, 54(4): 307-314.
[49] [49] LONG J Y, SONG K L, HE X, et al. Mutagenesis of phaR, a regulator gene of polyhydroxyalkanoate biosynthesis of Xanthomonas oryzae pv. oryzae caused pleiotropic phenotype changes[J]. Frontiers in Microbiology, 2018, 9: 3046.
[50] [50] LU G T, TANG Y Q, LI C Y, et al. An adenosine kinase exists in Xanthomonas campestris pathovar campestris and is involved in extracellular polysaccharide production, cell motility, and virulence[J]. Journal of Bacteriology, 2009, 191(11): 3639-3648.
[51] [51] LU G T, YANG Z J, PENG F Y, et al. The role of glucose kinase in carbohydrate utilization and extracellular polysaccharide production in Xanthomonas campestris pathovar campestris[J]. Microbiology, 2007, 153(12): 4284-4294.
[52] [52] LU G T, MA Z F, HU J R, et al. A novel locus involved in extracellular polysaccharide production and virulence of Xanthomonas campestris pathovar campestris[J]. Microbiology, 2007, 153(3): 737-746.
[53] [53] LU G T, XIE J R, CHEN L, et al. Glyceraldehyde-3-phosphate dehydrogenase of Xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and full virulence[J]. Microbiology, 2009, 155(5): 1602-1612.
[54] [54] CHEN L, WANG M, HUANG L, et al. XC_0531encodes a c-type cytochrome biogenesis protein and is required for pathogenesis in Xanthomonas campestris pv.campestris[J]. BMC Microbiology, 2017, 17(1): 142.
[55] [55] GUO W, ZOU L F, CAI L L, et al. Glucose-6-phosphate dehydrogenase is required for extracellular polysaccharide production, cell motility and the full virulence of Xanthomonas oryzae pv. oryzicola[J]. Microbial Pathogenesis, 2015, 78: 87-94.
[56] [56] CAI L L, ZOU L F, LING G E, et al. An inner membrane protein(Imp)of Xanthomonas oryzae pv. oryzicola functions in carbon acquisition, EPS production, bacterial motility and virulence in rice[J]. Journal of Integrative Agriculture, 2014, 13(12): 2656-2668.
[57] [57] POPLAWSKY A R, CHUN W. PigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris[J]. Journal of Bacteriology, 1997, 179(2): 439-444.
[58] [58] CAO X Q, WANG J Y, ZHOU L, et al. Biosynthesis of the yellow xanthomonadin pigments involves an ATP-dependent 3-hydroxybenzoic acid: acyl carrier protein ligase and an unusual type Ⅱ polyketide synthase pathway[J]. Molecular Microbiology, 2018, 110(1): 16-32.
[59] [59] HE Y W, BOON C, ZHOU L, et al. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR[J]. Molecular Microbiology, 2009, 71(6): 1464-1476.
[60] [60] ZHENG D, YAO X, DUAN M, et al. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression[J]. Scientific Reports, 2016, 6: 22768.
[61] [61] CHEN L, HU B, QIAN G, et al. Identification and molecular characterization of twin-arginine translocation system (Tat)in Xanthomonas oryzae pv. oryzae strain PXO99[J]. Archives of Microbiology, 2009, 191(2): 163-170.
[62] [62] GE C, HE C. Regulation of the type II secretion structural gene xpsE in Xanthomonas campestris pathovar campestris by the global transcription regulator Clp[J]. Current Microbiology, 2008, 56(2): 122-127.
[63] [63] SOUW P, DEMAIN A L. Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459[J]. Applied and Environmental Mic
robiology, 1979, 37(6): 1186-1192.
[64] [64] FUNAHASHI H, YOSHIDA T, TAGUCHI H. Effect of glucose concentrations on xanthan gum production by Xanthomonas campestris[J]. Journal of Fermentation and Bioengineering, 1987, 65(5): 603-606.
[65] [65] DAVIDSON I W. Production of polysaccharide by Xanthomonas campestris in continuous culture[J]. Fems Microbiology Letters, 1978, 3(6): 347-349.
[66] [66] GARCA-OCHOA F, CASAS J A. Viscosity of locust bean (Ceratonia siliqua)gum solutions[J]. Journal of the Science of Food and Agriculture, 1992, 59(1): 97-100.
[67] [67] MORAINE R A, ROGOVIN P. Kinetics of polysaccharide B-1459 fermentation[J]. Biotechnology and Bioengineering, 1966, 8(4): 511-524.
[68] [68] CADMUS M C, KNUTSON C A, LAGODA A A, et al. Synthetic media for production of quality xanthan gum in 20 liter fermentors[J]. Biotechnology and Bioengineering, 2010, 20(7): 1003-1014.
[69] [69] SHU, C H, YANG S T. Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris[J]. Biotechnology and Bioengineering, 1990, 35(5): 454-468.
[70] [70] GARCA- OCHOA F, SANTOS V E, ALCN A. Simulation of xanthan gum production by a chemically structured kinetic model[J]. Mathematics and Computers in Simulation, 1996, 42(2-3): 187-195.
Get Citation
Copy Citation Text
QIU Jiahui, HE Yawen. Advances in Applications and Research of Xanthan Gum[J]. Acta Laser Biology Sinica, 2019, 28(5): 385
Category:
Received: Jun. 3, 2019
Accepted: --
Published Online: Nov. 14, 2019
The Author Email: Yawen HE (yawenhe@sjtu.edu.cn)