Journal of Innovative Optical Health Sciences, Volume. 18, Issue 5, 2550009(2025)
Phase waves of local depolarization in biological tissues object speckle fields. Fundamental and applied aspects
[1] T. Durduran, R. Choe, W. B. Baker et al. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys., 73, 076701(2010).
[2] N. Ghosh, I. Vitkin. Tissue polarimetry: Concepts, challenges, applications, and outlook. J. Biomed. Opt., 16, 110801(2011).
[3] S. Jacques, D. A. Boas, C. Pitris, N. Ramanujam. Handbook of Biomedical Optics, 649-669(2011).
[4] A. G. Ushenko, V. P. Pishak, V. V. Tuchin. Handbook of Coherent Domain Optical Methods, 93-138(2004).
[5] N. Ghosh, M. Wood, A. Vitkin, V. V. Tuchin. Handbook of Photonics for Biomedical Science, 253-282(2010).
[6] D. Layden, N. Ghosh, I. A. Vitkin, R. K. Wang, V. V. Tuchin. Advanced Biophotonics: Tissue Optical Sectioning, 73-108(2013).
[7] A. Vitkin, N. Ghosh, A. de Martino, D. L. Andrews. Photonics: Scientific Foundations, Technology and Applications, 239-321(2015).
[8] H. R. Lee et al. Digital histology with Mueller polarimetry and fast DBSCAN. Appl. Opt., 61, 9616-9624(2022).
[9] M. Kim et al. Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis. J. Eur. Opt. Soc.: Rapid Publ., 18, 10(2022).
[10] H. R. Lee et al. Digital histology with Mueller microscopy: How to mitigate an impact of tissue cut thickness fluctuations. J. Biomed. Opt., 24, 076004(2019).
[11] P. Li et al. Analysis of tissue microstructure with Mueller microscopy: Logarithmic decomposition and Monte Carlo modeling. J. Biomed. Opt., 25, 015002(2020).
[12] H. R. Lee et al. Unconventional Optical Imaging, 10677, 1067718(2018).
[13] H. Ma, H. He, J. C. Ramella-Roman, J. C. Ramella-Roman, T. Novikova. Polarized Light in Biomedical Imaging and Sensing, 281-321(2023).
[14] N. I. Zabolotna, S. V. Pavlov et al. Biosensing and Nanomedicine VII, 9166, 916616(2014).
[15] O. G. Ushenko, A. V. Dubolazov, V. O. Balanets’ka et al. Wavelet analysis for polarization inhomogeneous laser images of blood plasma. Tenth Int. Conf. Correlation Optics, 8338, 83381H(2011).
[16] O. V. Angelsky, L. Cocco et al. Modern Metrology Concerns(2012).
[17] M. S. Garazdyuk et al. Polarization-phase images of liquor polycrystalline films in determining time of death. Appl. Opt., 55, B67-B71(2016).
[18] A. G. Ushenko, O. V. Dubolazov, V. A. Ushenko et al. Fourier polarimetry of human skin in the tasks of differentiation of benign and malignant formations. Appl. Opt., 55, B56-B60(2016).
[19] A. G. Ushenko, P. O. Angelsky, M. Sidor, Y. F. Marchuk, D. R. Andreychuk. Spatial-frequency selection of complex degree of coherence of laser images of blood plasma in diagnostics and differentiation of pathological states of human organism. Appl. Opt., 53, B172-B180(2014).
[20] V. A. Ushenko, A. V. Dubolazov, L. Y. Pidkamin et al. Mapping of polycrystalline films of biological fluids utilizing the Jones-matrix formalism. Laser Phys., 28, 025602(2018).
[21] V. Sankaran, J. T. Walsh, D. J. Maitland. Comparative study of polarized light propagation in biologic tissues. J. Biomed. Opt., 7, 300-306(2002).
[22] A. Shuaib, X. Li, G. Yao. Transmission of polarized light in skeletal muscle. J. Biomed. Opt., 16, 025001(2011).
[23] M. K. Swami, H. Patel, M. R. Somyaji, P. K. Kushwaha, P. K. Gupta. Size-dependent patterns in depolarization maps from turbid medium and tissue. Appl. Opt., 53, 6133-6139(2014).
[24] J. Chue-Sang, M. Gonzalez, A. Pierre, M. Laughrey, I. Saytashev, T. Novikova, J. C. Ramella-Roman. Optical phantoms for biomedical polarimetry: A review. J. Biomed. Opt., 24, 1-12(2014).
[25] N. Nishizawa, B. Al-Qadi, T. Kuchimaru. Angular optimization for cancer identification with circularly polarized light. J. Biophotonics, 14, e202000380(2014).
[26] J. F. de Boer, T. E. Milner. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt., 7, 359-371(2002).
[27] K. U. S. Kumar, K. K. Mahato, N. Mazumder. Polarization-resolved Stokes–Mueller imaging: A review of technology and applications. Lasers Med. Sci., 34, 1283-1293(2019).
[28] Y. He, K. Li, W. Li, Y. Qiu, D. Li, C. Wang, Q. Tang, Z. Li. Polarization coherency matrix tomography. J. Biophotonics, 16, e202300093(2023).
[29] D. Yang, Z. Yuan, M. Hu, Y. Liang. Zebrafish brain and skull imaging based on polarization-sensitive optical coherence tomography. J. Biophotonics, 15, e202200112(2022).
[30] J. E. Park, Z. Xin, D. Y. Kwon, S. W. Kim, H. Lee et al. Application of polarization sensitive-optical coherence tomography to the assessment of phase retardation in subpleural cancer in rabbits. Tissue Eng. Regen. Med., 8, 61-69(2023).
[31] J. Willemse, M. G. O. Gräfe, F. D. Verbraak, J. F. de Boer. In vivo 3D determination of peripapillary scleral and retinal layer architecture using polarization-sensitive optical coherence tomography. Transl. Vis. Sci. Technol., 9, 21(2021).
[32] B. Baumann, M. Augustin, A. Lichtenegger, D. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, C. Hitzenberger. Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye. J. Biomed. Opt., 23, 1-12(2018).
[33] C. Adams, M. B. Applegate, A. J. Miller et al. Distinguishing tumor from associated fibrosis to increase diagnostic biopsy yield with polarization-sensitive optical coherence tomography. Clin. Cancer Res., 25, 5242-5249(2019).
[34] K. Tao, K. Sun, Z. Ding, Y. Ma, H. Kuang, H. Zhao, T. Lai, Y. Zhou, T. Liu. Catheter-based polarization sensitive optical coherence tomography using similar Mueller matrix method. IEEE Trans. Biomed. Eng., 67, 60-68(2020).
[35] A. G. Ushenko, A. V. Dubolazov, O. Y. Litvinenko et al. 3D polarization correlometry of object fields of networks of biological crystals. Fourteenth Int. Conf. Correlation Optics, 11369, 113691M(2020).
[36] A. Bodnar, A. Dubolazov, A. Pavlyukovich et al. 3D Stokes correlometry of the polycrystalline structure of biological tissues. Optics and Photonics for Information Processing XIV, 11509, 115090V(2020).
[37] R. Marchesini, A. Bertoni, S. Andreola et al. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl. Opt., 28, 2318-2324(1989).
[38] D. K. Edwards, J. T. Gier, K. E. Nelson et al. Integrating sphere for imperfectly diffuse samples. J. Opt. Soc. Am., 51, 1279-1288(1961).
[39] S. P. Robinson. Principles of Forensic Medicine(1996).
[40] A. Ushenko, A. V. Dubolazov, J. Zheng, A. Litvinenko, M. Gorsky, Y. Ushenko, I. Soltys, O. Salega, Z. Chen, O. Wanchuliak. 3D polarization-interference holographic histology for wavelet-based differentiation of the polycrystalline component of biological tissues with different necrotic states. Forensic applications. J. Biomed. Opt., 29, 052920(2024).
[41] A. Ushenko, J. Zheng, A. Litvinenko, M. Gorsky, O. Wanchuliak, A. Dubolazov, Y. Ushenko, I. Soltys, O. Salega, Z. Chen. 3D digital polarization-holographic wavelet histology in determining the duration of mechanical damage to the myocardium. J. Biophotonics, 17, e202300372(2024).
[42] A. Ushenko, N. Pavlyukovich, O. Khukhlina, O. Pavlyukovich, I. Soltys, A. Dubolazov, Y. Ushenko, I. Gordey, J. Zheng, Z. Chen, L. Bin. Blood plasma film multifractal scanning in COVID-19 consequences diagnostics. J. Biophotonics, 17, e202400356(2024).
[43] A. Ushenko, A. Dubolazov, J. Zheng, O. Bakun, M. Gorsky, Y. Ushenko, O. Litvinenko, I. Gordey, Z. Chen, V. Sklyarchuk. Mueller matrix polarization interferometry of optically anisotropic architectonics of biological tissue object fields: The fundamental and applied aspects. Front. Phys., 11, 1302254(2024).
[44] O. Ushenko, O. Bilookyi, J. Zheng, A. Dubolazov, O. Olar, Y. Ushenko, I. Soltys, I. Mikirin, V. Skliarchuk, Z. Chen. 3D digital holographic polarimetry of laser speckle fields formed by polycrystalline blood films: A tool for differential diagnosis of thyroid pathology. Front. Phys., 12, 1426469(2024).
Get Citation
Copy Citation Text
Yurii Ushenko, Alexander Ushenko, Alexander Dubolazov, Mykhaylo Gorsky, Irina Soltys, Olexandra Litvinenko, Victor Bachinsky, Ivan Mikirin, Olexander Salega, Ivan Garasim, Jun Zheng, Lin Bin. Phase waves of local depolarization in biological tissues object speckle fields. Fundamental and applied aspects[J]. Journal of Innovative Optical Health Sciences, 2025, 18(5): 2550009
Category: Research Articles
Received: Nov. 5, 2024
Accepted: Jan. 12, 2025
Published Online: Aug. 27, 2025
The Author Email: Yurii Ushenko (yuriyu@gmail.com)