Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1900(2024)

Development of Tubular Solid Oxide Fuel Cells Technology

CHEN Ruyan1, GAO Jiutao1, GAO Yuan1, ZHANG Huiyu1, and LI Chengxin1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(85)

    [2] [2] SINGH M, ZAPPA D, COMINI E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges[J]. Int J Hydrog Energy, 2021, 46(54): 27643-27674.

    [3] [3] ZHANG S L, LI C X, LIU S, et al. Thermally sprayed large tubular solid oxide fuel cells and its stack: Geometry optimization, preparation, and performance[J]. J Therm Spray Technol, 2017, 26(3): 441-455.

    [5] [5] DAI Anna, XU Linfeng, SHUI Anze. Bull Chin Ceram Soc, 2015, 34(Suppl 1): 234-238.

    [6] [6] LIU Shaoming, DENG Zhanfeng, XU Guizhi, et al. Chin J Eng, 2020, 42(3): 278-288.

    [7] [7] HUANG K, SINGHAL S C. Cathode-supported tubular solid oxide fuel cell technology: A critical review[J]. J Power Sources, 2013, 237: 84-97.

    [8] [8] CAO Jing, WANG Xiaobo, SUN Xiang, et al. Southern Energy Construction, 2020, 7(2): 28-34.

    [9] [9] LI G D, GOU Y J, QIAO J S, et al. Recent progress of tubular solid oxide fuel cell: From materials to applications[J]. J Power Sources, 2020, 477: 228693.

    [10] [10] SONG Shidong, HAN Minfang, SUN Zaihong. Chin Sci Bull, 2013, 58(21): 2035-2045.

    [11] [11] KOBAYASHI Y, TAKENOBU K, ANDO Y, et al. Development of the next generation large scale SOFC toward realization of hydrogen society[J]. Proc Mech Eng Congr Jpn, 2015, 52(2): 111-116.

    [12] [12] QIAN Z. High-efficiency power generation - review of alternative systems[R]. 978-92-9029-569-3, London SW18 1DD: IEA Clean Coal Centre, 2015: 23.

    [13] [13] AGNEW G D, TOWNSEND J, MORITZ R R, et al. Progress in the development of a low cost 1MW SOFC hybrid[C]//Volume 7: Turbo Expo 2004. Vienna, Austria. ASMEDC, 2004: 2-4.

    [14] [14] SINGHAL S C. Progress in tubular solid oxide fuel cell technology[J]. Proc Vol, 1999, 19(1): 39-51.

    [15] [15] KOBAYASHI Y, ANDO Y, KISHIZAWA H, et al. Recent progress of SOFC-GT combined system with tubular type cell stack at MHI[J]. ECS Trans, 2013, 51(1): 79-86.

    [16] [16] TRASINO F, BOZZOLO M, MAGISTRI L, et al. Modelling and performance analysis of the Rolls-Royce Fuel Cell Systems Limited: 1 MW plant[J]. J. Eng. Gas Turbines Power,2011, 133(2): 021701.

    [17] [17] ONO T, MIYACHI I, SUZUKI M, et al. Development of residential SOFC cogeneration system[C]// IOP Conf. Ser.: Mater. Sci. Eng. 2011. 18:132007.

    [18] [18] BARRETT S. Mitsubishi Hitachi to integrate SOFC with micro gas turbine for Kyushu University demonstration [J]. Fuel Cells Bulletin, 2014, 2014:1.

    [19] [19] KOJI I, HISATOME N, NAGATA K, et al. Development of 25kW class SOFC module[J]. ECS Trans, 2007, 7(1):39-43.

    [23] [23] AHMAD M Z, AHMAD S H, CHEN R S, et al. Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application[J]. Int J Hydrog Energy, 2022, 47(2): 1103-1120.

    [24] [24] KUTERBEKOV K A, NIKONOV A V, BEKMYRZA K Z, et al. Classification of solid oxide fuel cells[J]. Nanomaterials (Basel), 2022, 12(7): 1059.

    [25] [25] CHELMEHSARA M E, MAHMOUDIMEHR J. Techno-economic comparison of anode-supported, cathode-supported, and electrolyte- supported SOFCs[J]. Int J Hydrog Energy, 2018, 43(32): 15521-15530.

    [26] [26] WALDBILLIG D, WOOD A, IVEY D G. Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes[J]. J Power Sources, 2005, 145(2): 206-215.

    [27] [27] YU Z D, LIU S J, ZHENG F, et al. Effects of the different supported structures on tubular solid oxide fuel cell performance[J]. Int J Electrochem Sci, 2016, 11(12): 10210-10222.

    [28] [28] HEDAYAT N, DHRUBA P, DU Y. Inert substrate-supported microtubular solid oxide fuel cells based on highly porous ceramic by low-temperature co-sintering[J]. Ceram Int, 2019, 45(1): 579-587.

    [29] [29] SHAIKH S P S, MUCHTAR A, SOMALU M R. A review on the selection of anode materials for solid-oxide fuel cells[J]. Renew Sustain Energy Rev, 2015, 51: 1-8.

    [30] [30] WANKMULLER F, MEFFERT M, RUSSNER N, et al. Multi-scale characterization of ceramic inert-substrate-supported and co-sintered solid oxide fuel cells[J]. J Mater Sci , 2020, 55: 11120-11136.

    [31] [31] ALMUTAIRI G, DHIR A, BUJALSKI. Direct operation of ip-solid oxide fuel cell with hydrogen and methane fuel mixtures under current load cycle operating condition[J]. J Fuel cells, 2014, 14(2): 231-238.

    [32] [32] MATSUZAKI Y, NAKAMURA K, SOMEKAWA T, et al. Multimodal assessment of durability and reliability of flattened tubular SIS stacks[J]. ECS Trans, 2013, 57(1): 325-333.

    [33] [33] NISHIURA M, KOGA S, KABATA T, et al. Development of SOFC-micro gas turbine combined cycle system[J]. ECS Trans, 2007, 7(1): 155-160.

    [34] [34] SHINICHI S, SUZUKI S, SUTO T, et al. Study on coal syngas applicability to SOFC module[J]. J ECS Transactions, 2019, 91(1): 99.

    [35] [35] YU J H, PARK G W, LEE S, et al. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode[J]. J Power Sources, 2007, 163(2): 926-932.

    [36] [36] SINGHAL S C, KENDALL. High-temperature solid oxide fuel cells: fundamentals, design and applications[M]. Elsevier, 2003.

    [37] [37] KENDALL K. Progress in microtubular solid oxide fuel cells[J]. Int J Appl Ceram Technol, 2010, 7(1): 1-9.

    [38] [38] ROY B R, SAMMES N M, SUZUKI T, et al. Mechanical properties of micro-tubular solid oxide fuel cell anodes[J]. J Power Sources, 2009, 188(1): 220-224.

    [39] [39] LAWLOR V. Review of the micro-tubular solid oxide fuel cell (Part II: Cell design issues and research activities) [J]. J Power Sources, 2013, 240: 421-441.

    [40] [40] LAWLOR V, GRIESSER S, BUCHINGER G, et al. Review of the micro-tubular solid oxide fuel cell[J]. J Power Sources, 2009, 193(2): 387-399.

    [41] [41] HEDAYAT N, PANTHI D, DU Y H. A novel method to fabricate inert substrate-supported microtubular solid oxide fuel cells by selective leaching[J]. ECS Trans, 2017, 78(1): 1781-1789.

    [42] [42] FAN J H, SHI J X, ZHANG R Y, et al. Numerical study of a 20-cell tubular segmented-in-series solid oxide fuel cell[J]. J Power Sources, 2023, 556: 232449.

    [43] [43] DIGIUSEPPE G. High power density cell development at siemens Westinghouse[J]. Proc Vol, 2005, 07(1): 322-332.

    [44] [44] IYENGAR A K S, DESAI N A, VORA S D, et al. Numerical investigation of a delta high power density cell and comparison with a flattened tubular high power density cell[J]. J Fuel Cell Sci Technol, 2010, 7(6): 1.

    [45] [45] LU Y X, SCHAEFER L. Numerical study of a flat-tube high power density solid oxide fuel cell[J]. J Power Sources, 2006, 153(1): 68-75.

    [46] [46] LU Y X, SCHAEFER L, LI P. Numerical study of a flat-tube high power density solid oxide fuel cell Part I. Heat/mass transfer and fluid flow[J]. J Power Sources, 2005, 140(2): 331-339.

    [47] [47] KAWABATA Y. Development and field test of residential SOFC co-generation system with all-ceramics-segmented cells[C]// International Gas Union Research Conference, 2011, Japan.

    [48] [48] ALMUTAIRI G, KENDALL K, BUJALSKI W. Cycling durability studies of IP-SOFC[J]. Int J Low-Carbon Tech, 2012, 7(1): 63-68.

    [49] [49] PARK J, BAE J, KIM J Y. The current density and temperature distributions of anode-supported flat-tube solid oxide fuel cells affected by various channel designs[J]. Int J Hydrog Energy, 2011, 36(16): 9936-9944.

    [50] [50] KHAZAEE I, RAVA A. Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries[J]. Energy, 2017, 119: 235-244.

    [51] [51] PARK J, BAE J, KIM J Y. A numerical study on anode thickness and channel diameter of anode-supported flat-tube solid oxide fuel cells[J]. Renew Energy, 2012, 42: 180-185.

    [52] [52] MUSTAFA C F, MUSTAFA I, SENAY Y. Effects of physical properties and operating parameters on numerically developed flat-tube solid oxide fuel cell performance[J]. Int J Hydrog Energy, 2023, 48(60): 23136-23145.

    [53] [53] YOSHIKAWA M, YAMAMOTO T, YASUMOTO K, et al. Degradation analysis of SOFC stack performance: Investigation of cathode sulfur poisoning due to contamination in air[J]. ECS Trans, 2017, 78(1): 2347-2354.

    [54] [54] YOSHIKAWA M, YAMAMOTO T, ASANO K, et al. Performance degradation analysis of different type SOFCs[J]. ECS Trans, 2015, 68(1): 2199-2208.

    [55] [55] LIU Xin. The Stability of Ni-YSZ Anode in Solid Oxide Fuel Cells [D]. Harbin: Harbin Institute of Technology, 2020.

    [56] [56] SHRI PRAKASH B, SENTHIL KUMAR S, ARUNA S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review[J]. Renew Sustain Energy Rev, 2014, 36: 149-179.

    [57] [57] SHAO Q, LUO L H, GUAN Z C, et al. Journal of ceramics,2022, 43(5): 759-779.

    [58] [58] WANG W, QU J F, BARROS J S, et al. Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels: a mini review[J]. J Energy Technology , 2019, 7(1): 33-44.

    [59] [59] MARINA O. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate[J]. Solid State Ion, 2002, 149(1-2): 21-28.

    [60] [60] HEDAYAT N, PANTHI D, DU Y H. Fabrication of anode-supported microtubular solid oxide fuel cells by sequential dip-coating and reduced sintering steps[J]. Electrochim Acta, 2017, 258: 694-702.

    [61] [61] KOBAYASHI Y, ANDO Y, NISHIURA M, et al. Recent progress of SOFC combined cycle system with segmented-in-series tubular type cell stack at MHI[J]. ECS Trans, 2013, 57(1): 53-60.

    [62] [62] YOSHIDA S, KABATA T, NISHIURA M, et al. Development of SOFC-GT combined cycle system with tubular type cell stack[J]. ECS Trans, 2011, 35(1): 105-111.

    [63] [63] YAO Y, WANG C P, MA Y, et al. Preparation and performance of a nano-honeycomb cathode for microtubular solid oxide fuel cells[J]. Int J Hydrog Energy, 2023, 48(13): 5229-5236.

    [64] [64] MILCAREK R J, AHN J. Micro-tubular solid oxide fuel cell polarization and impedance variation with thin porous samarium-doped ceria and gadolinium-doped ceria buffer layer thickness[J]. J Electrochem Energy Convers Storage, 2021, 18(2): 021004.

    [65] [65] LIU Y X, WANG S F, HSU Y F, et al. Characteristics of La0.8Sr0.2Ga0.8Mg0.2O3-δ-supported micro-tubular solid oxide fuel cells with LaCo0.4Ni0.6-xCuxO3-δ cathodes[J]. Int J Hydrog Energy, 2018, 43(11): 5703-5713.

    [66] [66] VAFAEENEZHAD S, SANDHU N K, HANIFI A R, et al. Development of proton conducting fuel cells using nickel metal support[J]. J Power Sources, 2019, 435: 226763.

    [67] [67] ZHU L Z, O’HAYRE R, SULLIVAN N P. High performance tubular protonic ceramic fuel cells via highly-scalable extrusion process[J]. Int J Hydrog Energy, 2021, 46(54): 27784-27792.

    [68] [68] TOMIDA K, KABATA T, HISATOME N, et al. Improvement of tubular type cell stack[J]. ECS Trans, 2007, 7(1): 173-180.

    [69] [69] AB RAHMAN M, OTHMAN M H D, FANSURI H, et al. Effect of sintering temperature on perovskite-based hollow fiber as a substrate for cathode-supported micro-tubular solid oxide fuel cell[J]. J Aust Ceram Soc, 2021, 57(4): 1199-1208.

    [70] [70] HART N T, BRANDON N P, DAY M J, et al. Functionally graded composite cathodes for solid oxide fuel cells[J]. J Power Sources, 2002, 106(1-2): 42-50.

    [71] [71] DWIVEDI S. Solid oxide fuel cell: Materials for anode, cathode and electrolyte[J]. Int J Hydrog Energy, 2020, 45(44): 23988-24013.

    [72] [72] CHENG J Q, GONG J Y, YUE S, et al. Electrochemical investigation of La0. 4Sr0. 6TiO3 synthesized in air for SOFC application[J]. Journal of Applied Electrochemistry, 2021, 51(8): 1175-1188.

    [73] [73] HASHIMOTO S, POULSEN F W, MOGENSEN M. Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature[J]. Journal of alloys ang Compounds,2007, 439(1-2): 232-236.

    [74] [74] HUANG W H, GOPALAN S. Bi-layer structures as solid oxide fuel cell interconnections[J]. J Power Sources, 2006, 154(1): 180-183.

    [75] [75] XU Y J, WANG S R, LIU R Z, et al. A novel bilayered Sr0.6La0.4TiO3/ La0.8Sr0.2MnO3 interconnector for anode-supported tubular solid oxide fuel cell via slurry-brushing and co-sintering process[J]. J Power Sources, 2011, 196(3): 1338-1341.

    [76] [76] PARK B K, LEE J W, LEE S B, et al. La-doped SrTiO3 interconnect materials for anode-supported flat-tubular solid oxide fuel cells[J]. Int J Hydrog Energy, 2012, 37(5): 4319-4327.

    [77] [77] MULLER A C, HERBSTRITT D, IVERS-TIFFE E. Development of a multilayer anode for solid oxide fuel cells[J]. Solid state ionics , 2002, 152: 537-542.

    [78] [78] ZHANG Y H, HUANG X Q, LU Z, et al. Effect of starting powder on screen-printed YSZ films used as electrolyte in SOFCs[J]. Solid State Ion, 2006, 177(3-4): 281-287.

    [79] [79] LIANG D H, HUANG J G, ZHANG H, et al. Influencing factors on the performance of tubular ceramic membrane supports prepared by extrusion[J]. Ceram Int, 2021, 47(8): 10464-10477.

    [80] [80] CIGDEM T, ONBILGIN S, TIMURKUTLUK B, et al. Effects of pore former type on mechanical and electrochemical performance of anode support microtubes in solid oxide fuel cells[J]. Int J Hydrog Energy, 2022, 47(22): 11633-11643.

    [81] [81] TIAN Fengyuan, LIU Jiang. J Chin Ceram Soc, 2021, 49(1): 136-152.

    [82] [82] REN C, LIU T, MAO Y T, et al. Effect of casting slurry composition on anode support microstructure and cell performance of MT-SOFCs by phase inversion method[J]. Electrochim Acta, 2014, 149: 159-166.

    [83] [83] REN C, ZHANG Y X, XU Q, et al. Effect of non-solvent from the phase inversion method on the morphology and performance of the anode supported microtubular solid oxide fuel cells[J]. Int J Hydrog Energy, 2020, 45(11): 6926-6933.

    [84] [84] DEEPI A S, DHARANI PRIYA S, SAMSON NESARAJ A, et al. Component fabrication techniques for solid oxide fuel cell (SOFC)-A comprehensive review and future prospects[J]. Int J Green Energy, 2022, 19(14): 1600-1612.

    [85] [85] TIMURKUTLUK C. Development of functionally graded anode supports for microtubular solid oxide fuel cells by tape casting and isostatic pressing[J]. Int J Hydrog Energy, 2023, 48(46): 17641-17653.

    [86] [86] ALTAN T, TIMURKUTLUK C, TIMURKUTLUK B, et al. Tape casting coupled with isostatic pressing as an alternative fabrication method for microtubular solid oxide fuel cells[J]. Int J Hydrog Energy, 2022, 47(16): 9735-9743.

    [87] [87] ALTAN T, TIMURKUTLUK C, TIMURKUTLUK B. Impact of lamination conditions on microtubular solid oxide fuel cells fabricated by tape casting coupled with isostatic pressing[J]. J Power Sources, 2022, 532: 231369.

    [88] [88] GAO J T, HANIF M B, ZHANG H Y, et al. Recent advances in microstructural control via thermal spraying for solid oxide fuel cells[J]. Chem Eng J, 2023, 478: 147352.

    [89] [89] LI C J, CHEN X, ZHANG S L, et al. The characteristics of cermet-supported tubular solid oxide fuel cells manufactured by thermal spraying[J]. ECS Trans, 2019, 91(1): 285-289.

    [90] [90] MUSHTAQ U, KIM D W, YUN U J, et al. Effect of cathode geometry on the electrochemical performance of flat tubular segmented- in-series(SIS) solid oxide fuel cell[J]. Int J Hydrog Energy, 2015, 40(18): 6207-6215

    Tools

    Get Citation

    Copy Citation Text

    CHEN Ruyan, GAO Jiutao, GAO Yuan, ZHANG Huiyu, LI Chengxin. Development of Tubular Solid Oxide Fuel Cells Technology[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1900

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Feb. 1, 2024

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: LI Chengxin (licx@mail.xjtu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240102

    Topics