Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1405(2025)
Sc and O Co-Doped Li10GeP2S12-Based Solid Electrolytes and Their Electrochemical Properties in All-Solid-State Lithium Batteries
[1] [1] LIANG F, SUN Y L, YUAN Y F, et al. Designing inorganic electrolytes for solid-state Li-ion batteries: A perspective of LGPS and garnet[J]. Mater Today, 2021, 50: 418–441.
[2] [2] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.
[3] [3] WU J H, LIU S F, HAN F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv Mater, 2021, 33(6): e2000751.
[4] [4] MINKIEWICZ J, JONES G M, GHANIZADEH S, et al. Large-scale manufacturing of solid-state electrolytes: Challenges, progress, and prospects[J]. Open Ceram, 2023, 16: 100497.
[5] [5] BAI X T, YU T W, REN Z M, et al. Key issues and emerging trends in sulfide all solid state lithium battery[J]. Energy Storage Mater, 2022, 51: 527–549.
[6] [6] RANDREMA X, LETEYI MFIBAN I, SOLER M, et al. Towards a practical use of sulfide solid electrolytes in solid-state batteries: Impact of dry room exposure on H2S release and material properties[J]. Batter Supercaps, 2024, 7(1): e202300380.
[7] [7] LU P S, WU D X, CHEN L Q, et al. Air stability of solid-state sulfide batteries and electrolytes[J]. Electrochem Energy Rev, 2022, 5(3): 3.
[8] [8] SAHU G, LIN Z, LI J C, et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4[J]. Energy Environ Sci, 2014, 7(3): 1053–1058.
[9] [9] LIU H, ZHU Q S, LIANG Y H, et al. Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries[J]. Chem Eng J, 2023, 462: 142183.
[10] [10] WANG Q T, LIU D X, MA X F, et al. Sb-doped Li10GeP2S12-type electrolyte Li10SnP2–xSbxS12 with enhanced ionic conductivity and lower lithium-ion migration barrier[J]. J Colloid Interface Sci, 2022, 627: 1039–1046.
[11] [11] WANG Y Q, L X J, ZHENG C, et al. Chemistry design towards a stable sulfide-based superionic conductor Li4Cu8Ge3S12[J]. Angew Chem Int Ed, 2019, 58(23): 7673–7677.
[12] [12] LIANG J W, CHEN N, LI X N, et al. Li10Ge(P1–xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J]. Chem Mater, 2020, 32(6): 2664–2672.
[13] [13] NACHIMUTHU S, CHENG H J, LAI H J, et al. First-principles study on selenium-doped Li10GeP2S12 solid electrolyte: Effects of doping on moisture stability and Li-ion transport properties[J]. Mater Today Chem, 2022, 26: 101223.
[14] [14] ZHANG N N, HE Q S, ZHANG L, et al. Homogeneous fluorine doping toward highly conductive and stable Li10GeP2S12 solid electrolyte for all-solid-state lithium batteries[J]. Adv Mater, 2024, 36(36): e2408903.
[15] [15] WANG Q T, LIU Q. Enhancement of ionic conductivity and air stability by co-doping Li10SnP2S12 with Nb and O[J]. J Energy Storage, 2024, 104: 114505.
[16] [16] LIANG Y H, LIU H, WANG G X, et al. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries[J]. InfoMat, 2022, 4(5): e12292.
[17] [17] LIU H, LIANG Y H, WANG C, et al. Priority and prospect of sulfide-based solid-electrolyte membrane[J]. Adv Mater, 2023, 35(50): e2206013.
[18] [18] LIANG Z T, XIANG Y X, WANG K J, et al. Understanding the failure process of sulfide-based all-solid-state lithium batteriesviaoperando nuclear magnetic resonance spectroscopy[J]. Nat Commun, 2023, 14(1): 259.
[19] [19] CHIEN P H, FENG X Y, TANG M X, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI[J]. J Phys Chem Lett, 2018, 9(8): 1990–1998.
[20] [20] ZHAO X L, XIANG P, WU J H, et al. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries[J]. Nano Lett, 2023, 23(1): 227–234.
[21] [21] SUN Y L, SUZUKI K, HARA K, et al. Oxygen substitution effects in Li10GeP2S12 solid electrolyte[J]. J Power Sources, 2016, 324: 798–803.
[22] [22] WANG Q T, ZHANG P, DU P F, et al. Sb and O co-doping in Li10SiP2S12 to reduce orthorhombic phase content and improve electrochemical performance[J]. J Alloys Compd, 2025, 1010: 178055.
[23] [23] KATO Y, SAITO R, SAKANO M, et al. Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−x M x)P2S12 (M = Si, Sn)[J]. J Power Sources, 2014, 271: 60–64.
[25] [25] KWON O, HIRAYAMA M, SUZUKI K, et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+Ge1+P2−S12[J]. J Mater Chem A, 2015, 3(1): 438–446.
[26] [26] NIKODIMOS Y, TSAI M C, ABRHA L H, et al. Al–Sc dual-doped LiGe2(PO4)3–a NASICON-type solid electrolyte with improved ionic conductivity[J]. J Mater Chem A, 2020, 8(22): 11302–11313.
[27] [27] RAN L B, BAKTASH A, LI M, et al. Sc, Ge co-doping NASICON boosts solid-state sodium ion batteries' performance[J]. Energy Storage Mater, 2021, 40: 282–291.
[28] [28] KIM K, PARK J, JEONG G, et al. Rational design of a composite electrode to realize a high-performance all-solid-state battery[J]. ChemSusChem, 2019, 12(12): 2637–2643.
[29] [29] JIANG Z, LIANG T B, LIU Y, et al. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution[J]. ACS Appl Mater Interfaces, 2020, 12(49): 54662–54670.
[30] [30] SUN Y, YAN W N, AN L, et al. A facile strategy to improve the electrochemical stability of a lithium ion conducting Li10GeP2S12 solid electrolyte[J]. Solid State Ion, 2017, 301: 59–63.
[31] [31] YI J G, CHEN L, LIU Y C, et al. High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte[J]. ACS Appl Mater Interfaces, 2019, 11(40): 36774–36781.
[32] [32] KIM K H, MARTIN S W. Structures and properties of oxygen-substituted Li10SiP2S12–xOx solid-state electrolytes[J]. Chem Mater, 2019, 31(11): 3984–3991.
[33] [33] JIN Y M, HE Q S, LIU G Z, et al. Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries[J]. Adv Mater, 2023, 35(19): 2211047.
[34] [34] SUBRAMANIAN Y, RAJAGOPAL R, KANG S, et al. Superior lithium dendrite suppression and air stability of dual Sc and O substituted Li-argyrodites and their enhanced cyclability in Li-batteries[J]. J Energy Storage, 2023, 68: 107715.
Get Citation
Copy Citation Text
XIAO Xingyue, ZHANG Ni, LIU Gaozhan, YAO Xiayin. Sc and O Co-Doped Li10GeP2S12-Based Solid Electrolytes and Their Electrochemical Properties in All-Solid-State Lithium Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1405
Category:
Received: Dec. 25, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: YAO Xiayin (yaoxy@nimte.ac.cn)