Oncoradiology, Volume. 34, Issue 3, 201(2025)
Deep learning model based on two-dimensional ultrasound images for preoperative prediction of breast cancer lymphovascular invasion: a human-machine comparison study
[1] [1] PHD H S, LISA A NEWMAN MD M, et al. Breast cancer statistics 2024[J]. CA A Cancer J Clin, 2024, 74(6): 477-495.
[2] [2] LIANG R, LI F F, YAO J Y, et al. Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer[J]. Sci Rep, 2024, 14(1): 16204.
[3] [3] YANG X Q, FAN X H, LIN S Y, et al. Assessment of lymphovascular invasion in breast cancer using a combined MRI morphological features, radiomics, and deep learning approach based on dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2024, 59(6): 2238-2249.
[4] [4] JIANG W Y, MENG R Q, CHENG Y, et al. Intra- and peritumoral based radiomics for assessment of lymphovascular invasion in invasive breast cancer[J]. J Magn Reson Imaging, 2024, 59(2): 613-625.
[5] [5] MA Q Q, LU X R, CHEN Q T, et al. Multiphases DCEMRI radiomics nomogram for preoperative prediction of lymphovascular invasion in invasive breast cancer[J]. Acad Radiol, 2024, 31(12): 4743-4758.
[6] [6] GONZALEZ J, BAHMAD H F, OCEJO S, et al. The usefulness of elastin staining to detect vascular invasion in cancer[J]. Int J Mol Sci, 2023, 24(20): 15264.
[7] [7] GE W, FAN X H, ZENG Y, et al. Exploring habitats-based spatial distributions: improving predictions of lymphovascular invasion in invasive breast cancer[J]. Acad Radiol, 2024, 31(11): 4317-4328.
[9] [9] LI X F, DESSI M, MARCUS D, et al. Prediction of deep myometrial infiltration, clinical risk category, histological type, and lymphovascular space invasion in women with endometrial cancer based on clinical and T2-weighted MRI radiomic features[J]. Cancers (Basel), 2023, 15(8): 2209.
[10] [10] ZHANG D, ZHOU W, LU W W, et al. Ultrasound-based deep learning radiomics nomogram for the assessment of lymphovascular invasion in invasive breast cancer: a multicenter study[J]. Acad Radiol, 2024, 31(10): 3917-3928.
[11] [11] DU Y, CAI M J, ZHA H L, et al. Ultrasound radiomics-based nomogram to predict lymphovascular invasion in invasive breast cancer: a multicenter, retrospective study[J]. Eur Radiol, 2024, 34(1): 136-148.
[12] [12] XU M L, YANG H M, YANG Q, et al. Radiomics nomogram based on digital breast tomosynthesis: preoperative evaluation of axillary lymph node metastasis in breast carcinoma[J]. J Cancer Res Clin Oncol, 2023, 149(11): 9317-9328.
[13] [13] SHI S M, SINGH A, MA J Q, et al. Development and validation of a multi-parametric MRI deep-learning model for preoperative lymphovascular invasion evaluation in rectal cancer[J]. Quant Imaging Med Surg, 2025, 15(1): 427-439.
[14] [14] LIU W, LI L, DENG J, et al. A comprehensive approach for evaluating lymphovascular invasion in invasive breast cancer: Leveraging multimodal MRI findings, radiomics, and deep learning analysis of intra- and peritumoral regions[J]. Comput Med Imaging Graph, 2024, 116: 102415.
[15] [15] ZHENG H, JIAN L, LI L, et al. Prior clinico-radiological features informed multi-modal MR images convolution neural network: a novel deep learning framework for prediction of lymphovascular invasion in breast cancer[J]. Cancer Med, 2024, 13(3): e6932.
[16] [16] KAYADIBI Y, KOCAK B, UCAR N, et al. MRI radiomics of breast cancer: machine learning-based prediction of lymphovascular invasion status[J]. Acad Radiol, 2022, 29(Suppl 1): S126-S134.
[17] [17] XU M L, YANG H M, SUN J, et al. Development of an intratumoral and peritumoral radiomics nomogram using digital breast tomosynthesis for preoperative assessment of lymphovascular invasion in invasive breast cancer[J]. Acad Radiol, 2024, 31(5): 1748-1761.
[18] [18] WANG D Q, LIU M S, ZHUANG Z J, et al. Radiomics analysis on digital breast tomosynthesis: preoperative evaluation of lymphovascular invasion status in invasive breast cancer[J]. Acad Radiol, 2022, 29(12): 1773-1782.
[20] [20] LIU W C, CHEN W B, XIA J, et al. Lymph node metastasis prediction and biological pathway associations underlying DCEMRI deep learning radiomics in invasive breast cancer[J]. BMC Med Imaging, 2024, 24(1): 91.
[21] [21] WANG H R, JIN Q Y, LI S M, et al. A comprehensive survey on deep active learning in medical image analysis[J]. Med Image Anal, 2024, 95: 103201.
[22] [22] CHEN J Y, LIU Y H, WEI S W, et al. A survey on deep learning in medical image registration: new technologies, uncertainty, evaluation metrics, and beyond[J]. Med Image Anal, 2025, 100: 103385.
[23] [23] ATASEVER S, AZGINOGLU N, TERZI D S, et al. A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning[J]. Clin Imaging, 2023, 94: 18-41.
[24] [24] YANG X Q, WANG X F, ZUO Z C, et al. Radiomics-based analysis of dynamic contrast-enhanced magnetic resonance image: a prediction nomogram for lymphovascular invasion in breast cancer[J]. Magn Reson Imaging, 2024, 112: 89-99.
[25] [25] FENG B, LIU Z S, LIU Y, et al. Predicting lymphovascular invasion in clinically node-negative breast cancer detected by abbreviated magnetic resonance imaging: TRAnsfer learningvsradiomics[J]. Front Oncol, 2022, 12: 890659.
[26] [26] BYRA M, JAROSIK P, DOBRUCH-SOBCZAK K, et al. Joint segmentation and classification of breast masses based on ultrasound radio-frequency data and convolutional neural networks[J]. Ultrasonics, 2022, 121: 106682.
Get Citation
Copy Citation Text
LAI Jinyu, ZHONG Lichang, SHI Lin, MA Fang, LI Weimei, GU Liping. Deep learning model based on two-dimensional ultrasound images for preoperative prediction of breast cancer lymphovascular invasion: a human-machine comparison study[J]. Oncoradiology, 2025, 34(3): 201
Category:
Received: Feb. 5, 2025
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: ZHONG Lichang (tjuzhonglichang@163.com)