Laser & Optoelectronics Progress, Volume. 59, Issue 3, 0314002(2022)

Numerical Simulation of Laser Cladding 316L/H13+20%WC Composite Coating on H13 Steel Surface

Huanxia Qiu1, Wenbin Yu2, Jianli Song1、*, Jia Deng1, Yunyi Li1, and Qilin Deng3
Author Affiliations
  • 1Beijing Key Laboratory of Photoelectric Testing Technology, Beijing Information Science & Technology University, Beijing 100192, China
  • 2CRRC Yongji Electric Co., Ltd. Xi'an Branch, Xi'an , Shaanxi 710016, China
  • 3School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    Figures & Tables(13)
    Thermo-physical parameters of 316L and H13+20%WC. (a)-(c) 316L; (d)-(f) H13+20%WC
    Finite element model and mesh division
    Diagram of nodes selection for temperature gradient calculation
    Temperature gradient of selected nodes change with time. (a) Node 1; (b) node 2; (c) node 3; (d) curves of maximum temperature gradient with preheating temperature for node 1 and node 3
    Variation of temperature gradient of selected nodes change with time. (a) (b) Node 1; (c) (d) node 2; (e) (f) node 3
    Diagram of nodes selection for temperature variation rate calculation
    Curves of temperature change with time at different preheating temperatures of selected nodes. (a) Node 4; (b) node 5
    Curves of temperature variation rate at cladding pool edge change with time of selected nodes. (a) Node 4; (b) node 5
    Curves of variation of temperature variation rate at cladding pool edge change with time of selected nodes. (a) Node 4; (b) node 5
    Microstructure of laser cladding forming 316L/H13+20%WC composite coatings under different conditions of substrate. (a) Crack at the cladding layer bonding under room temperature of substrate; (b) bottom microstructure of 316L cladding layer under 200 ℃ preheating of substrate; (c) microstructure of the cladding layer bonding under 200 ℃ preheating of substrate; (d) top microstructure of H13+20%WC cladding layer under 200 ℃ preheating of substrate
    • Table 1. Thermo-physical parameters of H13 steel

      View table

      Table 1. Thermo-physical parameters of H13 steel

      Temperature /℃Thermal conductivity /(W⋅m-1⋅℃-1Specific heat /(J⋅kg-1⋅℃-1Density /(kg⋅m-3
      2517.14527977
      10017.94757935
      40021.35337771
      60023.65657663
      80025.85987556
      100028.16307450
      120030.36647341
      140032.47947202
      160033.88266854
      180037.18306689
    • Table 2. Maximum of variation of temperature gradient of selected nodes

      View table

      Table 2. Maximum of variation of temperature gradient of selected nodes

      Preheating

      temperature /℃

      Variation of temperature gradient /(℃⋅m-1

      Node 1

      grad-Y

      Node 1

      grad-Z

      Node 2

      grad-Y

      Node 2

      grad-Z

      Node 3

      grad-Y

      Node 3

      grad-Z

      100-6844-2788-1964.5-1206.5-617-1399
      200-12451-6299-4024.0-2726.7-1562-3433
      300-13525-9808-6008.2-4195.5-2451-5495
    • Table 3. Composition of experiment materials

      View table

      Table 3. Composition of experiment materials

      Cladding materialMass fraction /%
      CCrSiMnMoVFeNi
      316L stainless steel powder0.03181.223-Bal.12
      H13 steel powder0.32—0.454.75—5.50.80—1.20.20—0.51.10—1.750.80—1.2Bal.-
    Tools

    Get Citation

    Copy Citation Text

    Huanxia Qiu, Wenbin Yu, Jianli Song, Jia Deng, Yunyi Li, Qilin Deng. Numerical Simulation of Laser Cladding 316L/H13+20%WC Composite Coating on H13 Steel Surface[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0314002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Mar. 29, 2021

    Accepted: May. 13, 2021

    Published Online: Jan. 24, 2022

    The Author Email: Jianli Song (songjianli@bistu.edu.cn)

    DOI:10.3788/LOP202259.0314002

    Topics