Infrared and Laser Engineering, Volume. 50, Issue 8, 20210350(2021)

Research progress of 2-5 µm mid-IR femtosecond optical parametric oscillator (Invited)

Wenlong Tian1, Kang Han1, Jiangfeng Zhu1、*, and Zhiyi Wei2、*
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
  • 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    References(57)

    [1] [1] Schliesser A, Picqué N, Hänsch T W, infrared frequency combs[J]. Nat Photon, 2012, 6: 440449.

    [2] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).

    [3] Crosson E R, Ricci K N, Richman B A, et al. Stable isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath[J]. Analy Chem, 74, 2003-2007(2002).

    [4] Popmintchev T, Chen M C, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [5] Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Na Photon, 8, 119-123(2014).

    [6] Hegenbarth R, Steinmann A, Mastel S, et al. High-power femtosecond mid-IR sources for s-SNOM applications[J]. J Opt, 16, 094003(2014).

    [7] Ma J, Qin Z P, Xie G Q, et al. Review of mid-infrared mode-locked laser sources in the 2.0-3.5 μm spectral region[J]. Appl Phys Rev, 6, 021317(2019).

    [8] Hu M L, Cai Y. Research progress of ultrafast fiber lasers in mid-infrared band[J]. Chinese Journal of Lasers, 47, 0500009(2020).

    [9] Cao H B, Wang H S, Yuan H, et al. Development of mid-infrared femtosecond light source based on optical parametric amplification (Invited)[J]. Acta Photonica Sinica, 49, 63-80(2020).

    [10] Nie H K, Ning J, Zhang B T, et al. Research progress of infrared optical parametric oscillator in optical superlattice[J]. Chinese Journal of Lasers, 48, 0501008(2021).

    [11] Witte S, Eikema K. Ultrafast optical parametric chirped-pulse amplification[J]. IEEE J Quantum Electron, 18, 296-307(2012).

    [12] Liu H, Sun S J, Zheng L, et al. Review of laser‐diode pumped Ti: sapphire laser[J]. Microw Opt Technol Lett, 63, 1-10(2021).

    [13] Chu H, Zhao S, Li G, et al. Mode-locked femtosecond polarization-maintaining Yb-doped fiber laser with a figure-nine configuration[J]. Opt Commun, 482, 126595(2021).

    [14] Chu Y X, Bi G Y, Fan J, et al. Dual-wavelength, high-repetition-rate, compact femtosecond optical parametric oscillator[J]. IEEE Photon Technol Lett, 32, 1269-1272(2020).

    [15] Ssa B, Am C, My D, et al. Soliton mode-locked Er-doped fiber laser by using Alq3 saturable absorber - ScienceDirect[J]. Optics & Laser Technology, 123, 105893(2020).

    [16] [16] Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey[M]. Berlin: Springer, 2005.

    [17] [17] Konstantin L V. Laserbased infrared Sources Applications[M]. New Yk: John Wiley & Sons, Inc. 2020.

    [18] Powers, P E, Tang C L, Cheng L K. High-repetition-rate femtosecond optical parametric oscillator based on RbTiOAsO4[J]. Opt Lett, 19, 1439-1441(1994).

    [19] Holtom G R, Crowell R A, Cheng L K. Femtosecond mid-infrared optical parametric oscillator based on CsTiOAsO4[J]. Opt Lett, 20, 1880-1882(1995).

    [20] Mccahon S W, Anson S A, Jang D J, et al. Generation of 3–4 μm femtosecond pulses from a synchronously pumped, critically phase-matched KTiOPO4 optical parametric oscillator[J]. Opt Lett, 20, 2309-2311(1995).

    [21] Spence D E, Wielandy S, Tang C L, et al. High average power, high‐repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator[J]. Appl Phys Lett, 68, 452-454(1996).

    [22] Burr K C, Tang C L, Arbore M A, et al. Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate[J]. Opt Lett, 22, 1458-1460(1997).

    [23] Lozaalvarez P, Brown C, Reid D T, et al. High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm[J]. Opt Lett, 24, 1523-1525(1999).

    [24] Tillman K A, Reid D T, Artigas D, et al. Idler-resonant femtosecond tandem optical parametric oscillator tuning from 2.1 μm to 4.2 μm[J]. J Opt Soc Am B, 21, 1551-1558(2004).

    [25] Kumar S C, Esteban M A, Ideguchi T, et al. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti: sapphire laser[J]. Laser Photon Rev, 8, L86-L91(2015).

    [26] Südmeyer T, Innerhofer E, Brunner F, et al. High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3[J]. Opt Lett, 29, 1111-3(2004).

    [27] Adler F, Cossel K C, Thorpe M J, et al. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm[J]. Opt Lett, 34, 1330-1332(2009).

    [28] Xu L, James S F, Han J S, Shen L, et al. Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtosecond pulses with high beam quality[J]. Appl Phy B, 117, 987-993(2014).

    [29] Steinle T, Neubrech F, Steinmann A, et al. Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter[J]. Opt Express, 23, 11105-11113(2015).

    [30] Jin Y, Cristescu S M, Harren F, et al. Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator[J]. Opt Express, 23, 20418-20427(2015).

    [31] Meng X H, Wang Z H, Tian W L, et al. Watt-level widely tunable femtosecond mid-infrared KTiOAsO4 optical parametric oscillator pumped by a 1.03 μm Yb: KGW laser[J]. Opt Lett, 43, 943-946(2018).

    [32] Popien S, Beutler M, Rimke I, et al. Femtosecond Yb-fiber laser synchronously pumped HgGa2S4 optical parametric oscillator tunable in the 4.4- to 12-μm range[J]. Opt Engineering, 57, 111802(2018).

    [33] Marzenell S, Beigang R, Wallenstein R. Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 μm to 8 μm[J]. Appl Phys B, 69, 423-428(1999).

    [34] Lippert E, Arisholm G, Fonnum H, et al. Mid-infrared optical parametric oscillator synchronously pumped by an erbium-doped fiber laser[J]. Opt Express, 18, 25379-25388(2010).

    [35] Coluccelli N, Fonnum H, Haakestad M, et al. 250-MHz synchronously pumped optical parametric oscillator at 2.25-2.6 μm and 4.1-4.9 μm[J]. Opt Express, 20, 22042(2012).

    [36] Metzger B, Pollard B, Rimke I, et al. Single-step sub-200fs mid-infrared generation from an optical parametric oscillator synchronously pumped by an erbium fiber laser[J]. Opt Lett, 41, 4383-4388(2016).

    [37] Pei L, Wang S, He P, et al. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources[J]. Opt Lett, 43, 2217-2220(2018).

    [38] Liu P, Zhang Z W. Chirped-pulse optical parametric oscillators[J]. Opt Lett, 43, 4735-4738(2018).

    [39] Liu P, Heng J, Zhang Z. Mode-locked chirped-pulse generation from optical parametric oscillators with an aperiodic quasi-phase-matching crystal[J]. Opt Lett, 45, 2568-2571(2020).

    [40] Leindecker N, Marandi A, Byer R L, et al. Broadband degenerate OPO for mid-infrared frequency comb generation[J]. Opt Express, 19, 6296-6302(2011).

    [41] Leindecker N, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser[J]. Opt Express, 20, 7046-7053(2012).

    [42] Lee K F, Mohr C, Jiang J, et al. Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator[J]. Opt Express, 23, 26596-26603(2015).

    [43] Ingold K A, Marandi A, Rudy C W, et al. Fractional-length sync-pumped degenerate optical parametric oscillator for 500-MHz 3-μm mid-infrared frequency comb generation[J]. Opt Lett, 39, 900-903(2014).

    [44] Smolski V O, Vasilyev S, Schunemann P G, et al. Cr: ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6–5.6 μm[J]. Opt Lett, 40, 2906-2908(2015).

    [45] Smolski V O, Yang H, Gorelov S D, et al. Coherence properties of a 2.6–7.5 μm frequency comb produced as a subharmonic of a Tm-fiber laser[J]. Opt Lett, 41, 1388-1393(2016).

    [46] Ru Q, Loparo Z E, Zhang X S, et al. Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser[J]. Opt Lett, 42, 4756-4759(2017).

    [47] Haakestad M W, Marandi A, Leindecker N, et al. Five‐cycle pulses near λ=3 μm produced in a subharmonic optical parametric oscillator via fine dispersion management[J]. Laser Photon Rev, 7, L93-L97(2013).

    [48] Marandi A, Ingold K A, Jankowski M, et al. Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared[J]. Optica, 3, 324-327(2016).

    [49] Sorokin E, Marandl A, Peter G, et al. Efficient half-harmonic generation of three optical-cycle mid-IR frequency comb around 4 μm using OP-GaP[J]. Opt Express, 26, 9963-9971(2018).

    [50] Smolski V, Vasilyev S, Moskalev I, et al. Half-Watt average power femtosecond source spanning 3-8 μm based on subharmonic generation in GaAs[J]. Appl Phys B, 124, 1-7(2018).

    [51] Nicolas T, Raman M, Kiss B, et al. Highly stable, 15 W, few-cycle, 65 mrad CEP-noise mid-IR OPCPA for statistical physics[J]. Opt Express, 26, 26907-26915(2018).

    [52] Fu Y, Xue B, Midorikawa K, et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification[J]. Appl Phys Lett, 112, 241105(2018).

    [53] Creeden D J, Zawilski K T, Pomeranz L A, et al. Advances in nonlinear optical crystals for mid-infrared coherent sources[J]. J Opt Soc Am B, 33, D36-D42(2016).

    [54] [54] Sergei T, Martin H, Jonas H, et al. SESAMmode locked Ho: YAG thindisk laser with 40.5 W of average power[C]CLEO, 2021: SF2M. 3.

    [55] Xu L, Chan H Y, Alam S U, et al. Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity[J]. Opt Lett, 40, 3288-3291(2015).

    [56] Lamour T P, Reid D T. 650-nJ pulses from a cavity-dumped Yb: fiber-pumped ultrafast optical parametric oscillator[J]. Opt Express, 19, 17557-17562(2011).

    [57] Liu Z, Ke L, Yang F, et al. 305-μJ, 10-kHz, picosecond optical parametric oscillator pumped synchronously and intracavity by a regenerative amplifier[J]. Opt Lett, 43, 539-542(2018).

    CLP Journals

    [1] Abulikemu Aiziheerjiang, Jiashaner Dana, Yuxia Zhou, Yusufu Taximaiti. High-beam-quality idler-resonant mid-infrared optical parametric oscillator based on MgO:PPLN[J]. Infrared and Laser Engineering, 2023, 52(4): 20220595

    [2] Beiyu Wang, Jiaxin Han, Cheng Jin. Features of vortex high harmonics generated by the Laguerre-Gaussian beam with nonzero radial node[J]. Infrared and Laser Engineering, 2022, 51(2): 20210895

    [3] Jiayu Huang, Haifeng Lin, Peiguang Yan. Highly efficient, widely tunable fan-out MgO: PPLN mid-infrared optical parametric oscillator[J]. Infrared and Laser Engineering, 2023, 52(5): 20220605

    Tools

    Get Citation

    Copy Citation Text

    Wenlong Tian, Kang Han, Jiangfeng Zhu, Zhiyi Wei. Research progress of 2-5 µm mid-IR femtosecond optical parametric oscillator (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210350

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—ultrafast and ultraintense mid-infrared laser technology

    Received: May. 30, 2021

    Accepted: --

    Published Online: Nov. 2, 2021

    The Author Email: Jiangfeng Zhu (jfzhu@xidian.edu.cn), Zhiyi Wei (zywei@iphy.ac.cn)

    DOI:10.3788/IRLA20210350

    Topics