Acta Photonica Sinica, Volume. 53, Issue 9, 0910003(2024)
Infrared and Visible Image Fusion Method Based on Information Enhancement and Mask Loss
[1] KARIM S, TONG Geng, LI Jinyang et al. Current advances and future perspectives of image fusion: a comprehensive review[J]. Information Fusion, 90, 185-217(2023).
[2] HAO Shuai, LI Jiahao, MA Xu et al. Infrared and visible image fusion algorithm based on feature optimization and GAN[J]. Acta Photonica Sinica, 52, 1210004(2023).
[3] FENG Xin, YANG Jieming, ZHANG Hongde et al. Infrared and visible image fusion based on dual channel residual dense network[J]. Acta Photonica Sinica, 52, 1110003(2023).
[4] TU Zhengzheng, LI Zhun, LI Chenglong et al. Multi-interactive dual-decoder for RGB-thermal salient object detection[J]. IEEE Transactions on Image Processing, 30, 5678-5691(2021).
[5] NAGARANI N, VENKATAKRISHNAN P, BALAJI N. Unmanned aerial vehicle's runway landing system with efficient target detection by using morphological fusion for military surveillance system[J]. Computer Communications, 151, 463-472(2020).
[6] LI Hui, WU Xiaojun, KITTLER J. MDLatLRR: a novel decomposition method for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 29, 4733-4746(2020).
[7] ZHANG Qiang, LI Guanghe, CAO Yunfeng et al. Multi-focus image fusion based on non-negative sparse representation and patch-level consistency rectification[J]. Pattern Recognition, 104, 107325(2020).
[8] MA Jiayi, CHEN Chen, LI Chang et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 31, 100-109(2016).
[9] MA Jinlei, ZHOU Zhiqiang, WANG Bo et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 82, 8-17(2017).
[10] ZHANG Yu, LIU Yu, SUN Peng et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 54, 99-118(2020).
[11] ZHANG Hao, MA Jiayi. SDNet: a versatile squeeze-and-decomposition network for real-time image fusion[J]. International Journal of Computer Vision, 129, 2761-2785(2021).
[12] MA Jiayi, YU Wei, LIANG Pengwei et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).
[13] MA Jiayi, ZHANG Hao, SHAO Zhenfeng et al. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-14(2020).
[14] LI Hui, WU Xiaojun, KITTLER J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 73, 72-86(2021).
[15] TANG Linfeng, YUAN Jiteng, MA Jiayi. Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 82, 28-42(2022).
[16] HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1397-1409(2013).
[17] MA Jiayi, TANG Linfeng, XU Meilong et al. STDFusionNet: an infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-13(2021).
[18] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66(1979).
[19] WANG Zhou, BOVIK A, SHEIKH H et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).
[20] TANG Linfeng, YUAN Jiteng, ZHANG Hao et al. PIAFusion: a progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 83, 79-92(2022).
[21] TOET A. The tno multiband image data collection[J]. Data in Brief, 15, 249-251(2017).
[22] JIA Xinyu, ZHU Chuang, LI Minzhen et al. LLVIP: a visible-infrared paired dataset for low-light vision[C], 3496-3504(2021).
[23] LI Hui, WU Xiaojun. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 28, 2614-2623(2018).
[24] WANG Di, LIU Jinyuan, LIU Risheng et al. An interactively reinforced paradigm for joint infrared-visible image fusion and saliency object detection[J]. Information Fusion, 98, 101828(2023).
[25] MA Jiayi, TANG Linfeng, FAN Fan et al. SwinFusion: cross-domain long-range learning for general image fusion via swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 9, 1200-1217(2022).
[26] ROBERTS J, AHMED F. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2, 023522(2008).
[27] ESKICIOGLU A, FISHER P. Image quality measures and their performance[J]. IEEE Transactions on Communications, 43, 2959-2965(1995).
[28] CUI Guangmang, FENG Huajun, XU Zhihai et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 341, 199-209(2015).
[29] RAO Yunjiang. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 8, 355(1997).
[30] HAN Yu, CAI Yunze, CAO Yin et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 14, 127-135(2013).
Get Citation
Copy Citation Text
Xiaodong ZHANG, Shuo WANG, Shaoshu GAO, Xinrui WANG, Long ZHANG. Infrared and Visible Image Fusion Method Based on Information Enhancement and Mask Loss[J]. Acta Photonica Sinica, 2024, 53(9): 0910003
Category:
Received: Jan. 29, 2024
Accepted: Apr. 24, 2024
Published Online: Nov. 13, 2024
The Author Email: Shuo WANG (S22070043@s.upc.edu.cn)