Semiconductor Optoelectronics, Volume. 45, Issue 2, 252(2024)

Road Crack Detection Method Combining A Visual Transformer and CNN

DAI Shaosheng1, LIU Kesheng1, and YU Zian2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(19)

    [3] [3] Wang S, Tang W. Pavement crack segmentation algorithm based on local optimal threshold of cracks density distribution[C]// Advanced Intelligent Computing: 7th International Conference, ICIC 2011, 2011: 298-302.

    [5] [5] Feng H, Xu G, Guo Y. Multi-scale classification network for road crack detection[J]. IET Intel. Transport Syst., 2019,13(2): 398-405.

    [7] [7] Zhang L, Yang F, Zhang Daniel Y, et al. Road crack detection using deep convolutional neural network[C]// 2016 IEEE Inter. Conf. on Image Processing (ICIP), 2016: 3708-3712.

    [8] [8] Xu Z, Sun Z, Huyan J, et al. Pixel-level pavement crack detection using enhanced high-resolution semantic network[J]. Int. J. Pavement Eng., 2022, 23(14): 4943-4957.

    [9] [9] Kheradmandi N, Mehranfar V. A critical review and comparative study on image segmentation-based techniques for pavement crack detection[J]. Constr. Build. Mater., 2022,321: 126162.

    [10] [10] Tang Y, Zhang A A, Luo L, et al. Pixel-level pavement crack segmentation with encoder-decoder network [J].Measurement, 2021, 184: 109914.

    [11] [11] Wang W, Xie E, Li X, et al. PVT v2: Improved baselines with pyramid vision transformer[J]. Comput. Visual Media,2022(3): 415-424.

    [12] [12] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Proc. of 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016:770-778.

    [14] [14] Liu H J, Miao X Y, Mertz C, et al. Crackformer:Transformer network for fine-grained crack detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 3763-3772.

    [15] [15] Ju X, Zhao X, Qian S. TransMF: Transformer-based multiscale fusion model for crack detection[J]. Mathematics,2022, 10(13): 2354.

    [16] [16] Ho J, Kalchbrenner N, Weissenborn D, et al. Axial attention in multidimensional transformers[J/OL]. ArXiv,2019, abs/1912: 12180. https://api.semantic scholar.org./Corpus ID: 209323787.

    [17] [17] Liu Y, Yao J, Lu X, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J].Neurocomputing, 2019, 338: 139-153.

    [18] [18] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Trans.Pattern Anal. Mach. Intell., 2017, 39(4): 640-651.

    [19] [19] Olaf R, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]// Bildverarbeitung für die Medizin, 2017, 2017: 1-3.

    [20] [20] Vijay B, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39(12):2481-2495.

    [21] [21] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proc. of the European Conf. on Computer Vision (ECCV), 2018: 833-851.

    [22] [22] Zou Q, Zhang Z, Li Q, et al. DeepCrack: Learning hierarchical convolutional features for crack detection[J].IEEE Trans. Image Process., 2019, 28(3): 1498-1512.

    [23] [23] Liu H, Yang J, Miao X, et al. CrackFormer network for pavement crack segmentation [J]. IEEE Trans. Intell.Transp. Syst., 2023, 24(9): 9240-9252.

    [24] [24] Cao H, Wang Y, Chen J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]// European Conf. on Computer Vision, 2022: 205-218.

    Tools

    Get Citation

    Copy Citation Text

    DAI Shaosheng, LIU Kesheng, YU Zian. Road Crack Detection Method Combining A Visual Transformer and CNN[J]. Semiconductor Optoelectronics, 2024, 45(2): 252

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 10, 2023

    Accepted: --

    Published Online: Aug. 14, 2024

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2023111003

    Topics