Optical Technique, Volume. 51, Issue 3, 316(2025)
Transformer based interference point cloud segmentation algorithm for underexcavated tunnels
[1] [1] Qiu W G, Cheng Y J. High-resolution DEM generation of railway tunnel surface using terrestrial laser scanning data for clearance inspection[J]. Journal of Computing in Civil Engineering,2017,31(1):04016045.
[2] [2] Jiang T E, Lin X J, Fang L, et al. Research on fitting algorithm of scattered point cloud based on 3D laser scanning[J]. Mobile Information Systems,2022,2022(1):8432308.
[3] [3] Zhu N N, Jia Y H, Luo L. Tunnel point cloud filtering method based on elliptic cylindrical model[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2016,41:735—740.
[4] [4] Duan D Y, Qiu W G, Cheng Y J, et al. Reconstruction of shield tunnel lining using point cloud[J]. Automation in Construction,2021,130:103860.
[6] [6] Xie X Y, Zhao M R, He J M, et al. Automatic and visual processing method of non-contact monitoring for circular stormwater sewage tunnels based on LiDAR data[J]. Energies,2019,12(9):1599.
[7] [7] Qiu S, Amwar S, Barnes N. Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion[C]∥Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2021:1757—1767.
[8] [8] Zhao H S, Jiang L, Jia J Y, et al. Point transformer [C]∥Proc of the IEEE/CVF International Conference on Computer Vision.Piscataway,NJ:IEEE,2021:16259—16268.
[9] [9] Ji A K, Alvin W Z C, Xue X L, et al. An encoder-decoder deep learning method for multi-class object segmentation from 3D tunnel point clouds[J]. Automation in Construction,2022,137:104187.
[10] [10] Soiln M, Nvoa A, Snchez-Rodrguez A, et al. Semantic segmentation of point clouds with pointnet and kpconv architectures applied to railway tunnels[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2020,2:281—288.
[11] [11] Qi C R, Su H, Mo K C, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]∥Proc of the IEEE Conference on Computer Vision and Pattern Recognition.Hawaii,USA:IEEE,2017:652—660.
[12] [12] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in NeurIPS,2017:5099—5108.
[13] [13] Xu M T, Zhang J H, Zhou Z P, et al. Learning geometry-disentangled representation for complementary understanding of 3d object point cloud[C]∥Proc of the AAAI Conference on Artificial Intelligence.Palo Alto,California USA:AAAI Press,2021,35(4)3056—3064.
[14] [14] Xu M Y, Zhou Z P, Qiao Y. Geometry sharing network for 3d point cloud classification and segmentation[C]∥Proc of the AAAI Conference on Artificial Intelligence. Palo Alto, California USA:AAAI Press,2020,34(07):12500—12507.
[15] [15] Xiang T G, Zhang C Y, Song Y, et al. Walk in the cloud: Learning curves for point clouds shape analysis[C]∥Proc of the IEEE/CVF International Conference on Computer Vision.Piscataway,NJ:IEEE,2021:915—924.
[16] [16] Li Y Y, Bu R, Sun M C, et al. Pointcnn: Convolution on x-transformed points[J]. Advances in Neural Information Processing Systems,2018,31.
[17] [17] Wu W X, Qi Z G, Li F X. Pointconv: Deep convolutional networks on 3d point clouds[C]∥Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. California,USA:IEEE,2019:9621—9630.
[18] [18] Thomas H, Qi C R, Deschaud J E, et al. Kpconv: Flexible and deformable convolution for point clouds[C]∥Proc of the IEEE/CVF International Conference on Computer Vision.Seoul,Korea:IEEE,2019:6411—6420.
[19] [19] Wang S L, Suo S, Ma W C, et al. Deep parametric continuous convolutional neural networks[C]∥Proc of the IEEE Conference on Computer Vision and Pattern Recognition.Utah,USA:IEEE,2018:2589—2597.
[20] [20] Wang Y, Sun Y B, Liu Z W, et al. Dynamic graph cnn for learning on point clouds[J]. ACM Transactions on Graphics(tog),2019,38(5):1—12.
[21] [21] Xu Q G, Sun X D, Wu C Y, et al. Grid-GCN for fast and scalable point cloud learning[C]∥Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2020:5661—5670.
[22] [22] Wang L, Huang Y C, Hou Y L, et al. Graph attention convolution for point cloud semantic segmentation[C]∥Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.California,USA:IEEE,2019:10296—10305.
[23] [23] Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3d shape recognition[C]∥Proc of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE,2015:945—953.
[24] [24] Lawin F J, Danelljan M, Tosteberg P, et al. Deep projective 3D semantic segmentation[C]∥Computer Analysis of Images and Patterns: 17th International Conference,CAIP.Ystad,Sweden:IEEE,2017:95—107.
[25] [25] Choy C, Gwak J Y, Savarese S. 4D Spatio-Temporal convnets: Minkowski convolutional neural networks[C]∥Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.California,USA:IEEE,2019:3075—3084.
[26] [26] Su H, Jampani V, Sun D Q, et al. SPLATNet: Sparse lattice networks for point cloud processing[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Utah,USA:IEEE,2018:2530—2539.
[27] [27] Qiu S, Anwar S, Barnes N. Dense-resolution network for point cloud classification and segmentation[C]∥Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.Piscataway,NJ:IEEE,2021:3813—3822.
[28] [28] Liu Y C, Fan B, Xiang S M, et al. Relation-shape convolutional neural network for point cloud analysis[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2019:8895—8904.
[29] [29] Xu Y F, Fan T Q, Xu M Y, et al. Spidercnn: Deep learning on point sets with parameterized convolutional filters [C]∥Proceedings of the European Conference on Computer Vision(ECCV).Berlin:Springer,2018:87—102.
[30] [30] Thomas H, Qi C R, Deschaud J E, et al. Kpconv: Flexible and deformable convolution for point clouds[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision.Piscataway,NJ:IEEE,2019:6411—6420.
[31] [31] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems,2017.
[32] [32] Wang X L, Girshick R, Gupta A, et al. Non-local neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7794—7803.
[33] [33] Hu J, Shen L, Sun G. Squeeze-and-excitation networks [C]∥Proc of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2018:7132—7141.
[34] [34] Feng M T, Zhang L, Lin X F, et al. Point attention network for semantic segmentation of 3D point clouds[J]. Pattern Recognition,2020,107:107446.
[35] [35] Qiu S, Anwar S, Barnes N. Geometric back-projection network for point cloud classification[J]. IEEE Transactions on Multimedia,2021,24:1943—1955.
[36] [36] Chen C, Fragonara L Z, Tsourdos A. GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud[J]. Neurocomputing,2021,438:122—132.
Get Citation
Copy Citation Text
FU Sisi, LIU Chuang, WANG Jinsong, LIU Pei. Transformer based interference point cloud segmentation algorithm for underexcavated tunnels[J]. Optical Technique, 2025, 51(3): 316