Laser & Optoelectronics Progress, Volume. 56, Issue 10, 101009(2019)

Classification of Chopped Strand Mat Defects Based on Convolutional Neural Network

Dong Zhuo, Junfeng Jing*, Huanhuan Zhang, and Zebin Su
Author Affiliations
  • School of Electronic Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • show less
    Figures & Tables(11)
    Architecture of convolutional neural network model
    Training process of convolutional neural network
    Flow chart of experiment
    Number of defect samples
    Dataset samples. (a)-(d) Parallel; (e)-(h) poor dispersion; (i)-(l) yarn knot; (m)-(p) stain
    Comparison of initialization parameters. (a) Training accuracy; (b) verification accuracy; (c) training loss values; (d) verification loss values
    Training process of fine-tuning. (a) Training accuracy; (b) verification accuracy; (c) training loss values; (d) verification loss values
    • Table 1. Comparison of initialization parameters

      View table

      Table 1. Comparison of initialization parameters

      MethodTrainingaccuracy /%TraininglossVerificationaccuracy /%Verificationloss
      Randomlyinitialized80.00.027075.00.032
      Migrationinitialized99.60.001686.50.023
    • Table 2. Model performances

      View table

      Table 2. Model performances

      Network structureTraining accuracy /%Training lossVerification accuracy /%Verification lossModeling time /s
      Resnet1899.70.001984.60.026350
      Resnet5099.90.001093.00.015949
      Resnet10199.80.005885.60.0221518
      VGG1199.20.001780.00.035940
      VGG1699.40.001386.20.0271629
      VGG1999.60.001686.50.0231952
    • Table 3. Confusion matrix of test sample

      View table

      Table 3. Confusion matrix of test sample

      MatrixPredicted value
      ParallelPoordispersionYarnknotStain
      TruevalueParallel260200
      Poordispersion0257150
      Yarn knot012430
      Stain002260
    • Table 4. Evaluation of network performances

      View table

      Table 4. Evaluation of network performances

      Defect categoryPRF1
      Parallel1.000.991.00
      Poor dispersion0.990.940.97
      Yarn knot0.931.000.96
      Stain1.000.991.00
    Tools

    Get Citation

    Copy Citation Text

    Dong Zhuo, Junfeng Jing, Huanhuan Zhang, Zebin Su. Classification of Chopped Strand Mat Defects Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Oct. 29, 2018

    Accepted: Dec. 14, 2018

    Published Online: Jul. 4, 2019

    The Author Email: Junfeng Jing (jingjunfeng0718@sina.com)

    DOI:10.3788/LOP56.101009

    Topics