Laser & Infrared, Volume. 54, Issue 7, 1102(2024)

A pulse rate detection method for eliminating motion artifacts based on wearable photoelectric sensing technology

WANG Xue-li1, SHAN Gai-xian2, GAO Hua-fang1, and MA Xu1、*
Author Affiliations
  • 1National Research Institute for Family Planning, Beijing 100081, China
  • 2PLA Strategic Support Force Characteristic Medical Center, Beijing 100081, China
  • show less
    References(24)

    [1] [1] Chen G, Au C, Chen J. Textile triboelectric nanogenerators for wearable pulse wave monitoring[J]. Trends in Biotechnology, 2021, 39(10): 1078-1092.

    [2] [2] Davies J I, Struthers A D. Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses[J]. Journal of Hypertension, 2003, 21(3): 463-472.

    [3] [3] Korpas D, Halek J, Doleal L. Parameters describing the pulse wave[J]. Physiological Research, 2009, 58(4).

    [4] [4] Chung C Y, Cheng Y W, Luo C H. Neural network study for standardizing pulse-taking depth by the width of artery[J]. Computers in Biology and Medicine, 2015, 57: 26-31.

    [5] [5] Yoo S K, Shin K Y, Lee T B, et al. New pulse wave measurement method using different hold-down wrist pressures according to individual patient characteristics[J]. SpringerPlus, 2013, 2(1): 1-8.

    [6] [6] Convertino V A, Schauer S G, Weitzel E K, et al. Wearable sensors incorporating compensatory reserve measurement for advancing physiological monitoring in critically injured trauma patients[J]. Sensors, 2020, 20(22): 6413.

    [7] [7] Allen J, Murray A. Age-related changes in peripheral pulse timing characteristics at the ears, fingers and toes[J]. Journal of human Hypertension, 2002, 16(10): 711-717.

    [8] [8] Chan M, Ganti V G, Heller J A, et al. Enabling continuous wearable reflectance pulse oximetry at the sternum[J]. Biosensors, 2021, 11(12): 521.

    [9] [9] Chen Y, Lu B, Chen Y, et al. Biocompatible and ultra-flexible inorganic strain sensors attached to skin for long-term vital signs monitoring[J]. IEEE Electron Device Letters, 2016, 37(4): 496-499.

    [10] [10] Huang C, Ren T L, Luo J. Effects of parameters on the accuracy and precision of ultrasound-based local pulse wave velocity measurement: a simulation study[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(12): 2001-2018.

    [11] [11] Biswas D, Simues-Capela N, Van Hoof C, et al. Heart rate estimation from wrist-worn photoplethysmography: a review[J]. IEEE Sensors Journal, 2019, 19(16): 6560-6570.

    [12] [12] Tamura T. Current progress of photoplethysmography and SPO2 for health monitoring[J]. Biomedical engineering letters, 2019, 9(1): 21-36.

    [13] [13] Lee I, Park N, Lee H, et al. Systematic review on human skin-compatible wearable photoplethysmography sensors[J]. Applied Sciences, 2021, 11(5): 2313.

    [14] [14] Chen S, Qi J, Fan S, et al. Flexible wearable sensors for cardiovascular health monitoring[J]. Advanced Healthcare Materials, 2021, 10(17): 2100116.

    [15] [15] Majumder S, Mondal T, Deen M J. Wearable sensors for remote health monitoring[J]. Sensors, 2017, 17(1): 130.

    [16] [16] Hashim N M Z, Ali N A, Salleh A, et al. Development of optimal photosensors based heart pulse detector[J]. International Journal of Engineering and Technology (IJET), 2013, 5(4): 3601-3607.

    [17] [17] Raj R, Jothi S J. Estimation of heart rate from photoplethysmographic signal using SVR method[J]. The International Journal of Science & Technoledge, 2014, 2(2).

    [18] [18] Maeda Y, Sekine M, Tamura T. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography[J]. Journal of Medical Systems, 2011, 35: 969-976.

    [19] [19] Lee C M, Zhang Y T. Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach[C]//IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, 2003. IEEE, 2003: 194-195.

    [20] [20] Seyedtabaii S, Seyedtabaii L. Kalman filter based adaptive reduction of motion artifact from photoplethysmographic signal[J]. World Acad. Sci. Eng. Technol, 2008, 37(2): 173-176.

    [22] [22] Lee H W, Lee J W, Jung W G, et al. The periodic moving average filter for removing motion artifacts from PPG signals[J]. International Journal of Control, Automation, and Systems, 2007, 5(6): 701-706.

    [23] [23] Sun B, Wang C, Chen X, et al. PPG signal motion artifacts correction algorithm based on feature estimation[J]. Optik, 2019, 176: 337-349.

    [24] [24] Maeda Y, Sekine M, Tamura T. The advantages of wearable green reflected photoplethysmography[J]. Journal of Medical Systems, 2011, 35: 829-834.

    [25] [25] Chen Q, Tang L. A wearable blood oxygen saturation monitoring system based on bluetooth low energy technology[J]. Computer Communications, 2020, 160: 101-110.

    Tools

    Get Citation

    Copy Citation Text

    WANG Xue-li, SHAN Gai-xian, GAO Hua-fang, MA Xu. A pulse rate detection method for eliminating motion artifacts based on wearable photoelectric sensing technology[J]. Laser & Infrared, 2024, 54(7): 1102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 9, 2023

    Accepted: Apr. 30, 2025

    Published Online: Apr. 30, 2025

    The Author Email: MA Xu (mx_nri@163.com)

    DOI:10.3969/j.issn.1001-5078.2024.07.016

    Topics