Laser & Optoelectronics Progress, Volume. 59, Issue 16, 1615004(2022)

Rice Pest Identification Based on Convolutional Neural Network and Transfer Learning

Hongyun Yang1、*, Xiaomei Xiao1, Qiong Huang2, Guoliang Zheng1, and Wenlong Yi1
Author Affiliations
  • 1School of Software, Jiangxi Agricultural University, Nanchang 330045, Jiangxi , China
  • 2School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi , China
  • show less
    Figures & Tables(12)
    Samples of rice pests. (a) Rice weevil; (b) rice planthopper; (c) rice grasshopper; (d) striped rice borer; (e) rice leaf roller; (f) yellow rice borer
    Structure of convolutional neural network
    VGG16 convolutional neural network model
    Flow chart of rice pest algorithm based on CNN and parameter migration
    Recognition effect based on the newly learned VGG16. (a) Accuracy curve;(b) loss curve
    [in Chinese]
    • Table 1. Rice pest dataset

      View table

      Table 1. Rice pest dataset

      Pest speciesNumber of images
      OriginalAfter data enhancement
      Rice weevil1121120
      Rice planthopper1221220
      Rice grasshoppe1071070
      Striped rice borer1271270
      Rice leaf roller1061060
      Yellow rice borer1021020
    • Table 2. Experimental comparison of different top-level design schemes

      View table

      Table 2. Experimental comparison of different top-level design schemes

      Experiment numberAccuracy /%LossTime /sModel size /MB
      184.700.6899439.0368.4
      296.430.0989650154
      396.940.0909742252
      497.150.09810524968
      591.840.330924456.2
    • Table 3. Influence of freezing all convolutional layers on experiment

      View table

      Table 3. Influence of freezing all convolutional layers on experiment

      ModelWhether to unfreeze convolution layerAccuracy /%LossTime /sModel size /MB
      VGG16_MNo96.430.0989650154
      Yes98.980.04210015172
      VGG16_NNo91.840.330924456.2
      Yes99.050.025966174.2
    • Table 4. Comparison between improved scheme and original model

      View table

      Table 4. Comparison between improved scheme and original model

      ModelLearning methodAccuracy /%LossTime /sModel size /MB
      VGG16New learning86.520.93202041000
      VGG16_NTransfer learning99.050.02966174.2
    • Table 5. Classification performance of proposed model

      View table

      Table 5. Classification performance of proposed model

      Pest speciesPrecisionRecallF1
      Rice grasshoppe0.980.990.98
      Rice planthopper0.990.990.99
      Rice weevil0.990.990.99
      Striped rice borer0.990.990.99
      The rice leaf roller1.001.001.00
      Yellow rice borer1.000.990.99
    • Table 6. Performance comparison of different network models

      View table

      Table 6. Performance comparison of different network models

      ModelLearning methodAccuracy /%LossTime /sModel size /MB
      AlexnetNew learning94.200.30895109444
      Resnet34New learning98.250.071915128173
      Resnet50New learning96.790.1911398270349
      VGG16_NTransfer learning99.050.0247966174.2
    Tools

    Get Citation

    Copy Citation Text

    Hongyun Yang, Xiaomei Xiao, Qiong Huang, Guoliang Zheng, Wenlong Yi. Rice Pest Identification Based on Convolutional Neural Network and Transfer Learning[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1615004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jul. 29, 2021

    Accepted: Sep. 24, 2021

    Published Online: Jul. 22, 2022

    The Author Email: Hongyun Yang (nc_yhy@163.com)

    DOI:10.3788/LOP202259.1615004

    Topics