Acta Optica Sinica, Volume. 42, Issue 6, 0606001(2022)

Path Loss of Ultraviolet Non-Line-of-Sight Communication in Rugged Terrain Based on Digital Elevation Model

Ketao Feng1, Xiaoyi Li1、*, Lehua Wu1, Xuan Qian2, Shentao Wang1, Mou Chen1, Mengru Li1, and Kunlun Li3
Author Affiliations
  • 1Communication Sergeant School, Army Engineering University, Chongqing 400035, China
  • 2National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100101, China
  • 3Unit 78092 of PLA, Chengdu, Sichuan 610036, China
  • show less
    Figures & Tables(22)
    Single scattering communication model of ultraviolet non-line-of-sight light
    Transmission diagram without obscure objects
    LP varying with θT and θR. (a) θT; (b) θR
    Transmission diagram with obscure objects
    Schematic diagram of tangent transmission
    Regular grid terrain model
    Process of obtaining optimal values of receiving and transmitting elevations based on DEM
    DEM sketch map of mountain
    Projection diagram of longitudinal section L on xoy plane
    Schematic diagram of adjacent grid point selection. (a) Along y axis; (b) along x axis
    Schematic diagram of outline curve of longitudinal section L
    Schematic diagram of maximum tangent angle
    Terrain Ⅰ
    Schematic diagram of locations of receiving and transmitting ends. (a) Group 1; (b) group 2; (c) group 3
    Results of experiment 1. (a) Location diagram of DEM; (b) profile diagram; (c) optimal θT and θR; (d) path loss
    Results of experiment 2. (a) Location diagram of DEM; (b) profile diagram; (c) optimal θT and θR; (d) path loss
    Results of experiment 3. (a) Location diagram of DEM; (b) profile diagram; (c) optimal θT and θR; (d) path loss
    • Table 1. Simulation parameters

      View table

      Table 1. Simulation parameters

      ParameterValue
      Wavelength λ /nm266
      Transmitting power Pt /W0.02
      Receiving aperture area Ar /m21.77×10-4
      Divergence angle φT /(°)30
      Field of view of receiver φR /(°)30
      Absorption coefficient Ka /m-17.45×10-4
      Rayleigh scattering coefficient KR /m-12.58×10-4
      Mie scattering coefficient KM /m-18.87×10-4
      Parameter of Rayleigh scattering phase function γ0.017
      Asymmetry factor of Mie scattering phase function g0.72
      Scattering factor of Mie scattering phase function f0.5
      Communication baseline distance r /m100
    • Table 2. Coordinate values of Mi,1-Mi,6

      View table

      Table 2. Coordinate values of Mi,1-Mi,6

      ItemGrid pointxyh
      CoordinateValueCoordinateValueCoordinateValue
      Mi,1Xi,1X[floor(xi/d)+1]Yi,1Y(yi/d+2)Hi,1H[floor(xi/d)+1,yi/d+2]
      Mi,2Xi,2X[floor(xi/d)+2]Yi,2Y(yi/d+2)Hi,2H[floor(xi/d)+2,yi/d+2]
      AMi,3Xi,3X[floor(xi/d)+1]Yi,3Y(yi/d+1)Hi,3H[floor(xi/d)+1,yi/d+1]
      Mi,4Xi,4X[floor(xi/d)+2]Yi,4Y(yi/d+1)Hi,4H[floor(xi/d)+2,yi/d+1]
      Mi,5Xi,5X[floor(xi/d)+1]Yi,5Y(yi/d)Hi,5H[floor(xi/d)+1,yi/d]
      Mi,6Xi,6X[floor(xi/d)+2]Yi,6Y(yi/d)Hi,6H[floor(xi/d)+2,yi/d]
      Mi,1Xi,1X(xi/d)Yi,1Y[floor(yi/d)+2]Hi,1H[xi/d,floor(yi/d)+2]
      Mi,2Xi,2X(xi/d)Yi,2Y[floor(yi/d)+1]Hi,2H[xi/d,floor(yi/d)+1]
      BMi,3Xi,3X(xi/d+1)Yi,3Y[floor(yi/d)+2]Hi,3H[xi/d+1,floor(yi/d)+2]
      Mi,4Xi,4X(xi/d+1)Yi,4Y[floor(yi/d)+1]Hi,4H[xi/d+1,floor(yi/d)+1]
      Mi,5Xi,5X(xi/d+2)Yi,5Y[floor(yi/d)+2]Hi,5H[xi/d+2,floor(yi/d)+2]
      Mi,6Xi,6X(xi/d+2)Yi,6Y[floor(yi/d)+1]Hi,6H[xi/d+2,floor(yi/d)+1]
    • Table 3. Comparison of terrain interpolation effect

      View table

      Table 3. Comparison of terrain interpolation effect

      MethodEMAE /mERMSE /mRAverage time /s
      BI0.071940.170340.999970.0149
      OK0.280270.481690.999831.9843
      IDW0.048050.150140.999980.0431
    • Table 4. Tangent angle and path loss

      View table

      Table 4. Tangent angle and path loss

      Group123
      θE /(°)θF /(°)LP /dBθE /(°)θF /(°)LP /dBθE /(°)θF /(°)LP /dB
      Terrain Ⅰ4.367.07114.46617.7614.68116.16720.2321.35117.290
      Terrain Ⅱ4.787.42114.45218.0215.13116.12420.5123.15116.905
    • Table 5. Growth rate of path loss

      View table

      Table 5. Growth rate of path loss

      (θT,θR)Growth rate /%(θT,θR)Growth rate /%(θT,θR)Growth rate /%(θT,θR)Growth rate /%
      (11°,11°)5.48(21°,21°)3.81(31°,31°)3.74(41°,41°)2.87
      (12°,12°)10.35(22°,22°)7.46(32°,32°)7.31(42°,42°)5.50
      (13°,13°)14.71(23°,23°)10.96(33°,33°)10.70(43°,43°)7.92
    Tools

    Get Citation

    Copy Citation Text

    Ketao Feng, Xiaoyi Li, Lehua Wu, Xuan Qian, Shentao Wang, Mou Chen, Mengru Li, Kunlun Li. Path Loss of Ultraviolet Non-Line-of-Sight Communication in Rugged Terrain Based on Digital Elevation Model[J]. Acta Optica Sinica, 2022, 42(6): 0606001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jul. 28, 2021

    Accepted: Sep. 28, 2021

    Published Online: Mar. 15, 2022

    The Author Email: Li Xiaoyi (li_mingdong@126.com)

    DOI:10.3788/AOS202242.0606001

    Topics