Laser & Infrared, Volume. 55, Issue 3, 436(2025)
Multi-scale cascaded fusion network for infrared small target segmentation
[3] [3] Zhao M, Li W, Li L, et al. Single-frame infrared small-target detection: a survey[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(2): 87-119.
[4] [4] Kou R, Wang C, Peng Z, et al. Infrared small target segmentation networks: a survey[J]. Pattern Recognition, 2023, 143: 109788.
[6] [6] Wang H, Zhou L, Wang L. Miss Detection vs. False alarm: adversarial learning for small object segmentation in infrared images[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 8508-8517.
[7] [7] Dai Y, Wu Y, Zhou F, et al. Asymmetric contextual modulation for infrared small target detection[C]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV), 2021: 949-958.
[8] [8] Zhang T, Li L, Cao S, et al. Attention-guided pyramid context networks for detecting infrared small target under complex background[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4250-4261.
[9] [9] Wu X, Hong D, Chanussot J. UIU-Net: U-Net in U-net for infrared small object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 364-376.
[10] [10] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv, 2017. arXiv.1706.03762.
[11] [11] Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[12] [12] Wang K, Du S, Liu C, et al. Interior attention-aware network for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
[13] [13] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
[14] [14] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[C]//ICLR.2016.
[15] [15] Li B, Xiao C, Wang L, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2023, 32: 1745-1758.
[16] [16] Gao C, Meng D, Yang Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009.
[17] [17] Gao Ch Q, Tian J W, Wang P. Generalised-structure-tensor-based infrared small target detection[J]. Electronics Letters, 2008, 44(23): 1349.
[18] [18] Paszke A, Chaurasia A, Kim S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[J]. arXiv, 2016. arXiv: 1606.02147.
[19] [19] Yu C, Wang J, Peng C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[J]. arXiv, 2018. arXiv: 1808: 00897.
[20] [20] Li H, Xiong P, Fan H, et al. DFANet: deep feature aggregation for real-time semantic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 9514-9523.
[21] [21] Kou R, Wang C, Yu Y, et al. LW-IRSTNet: lightweight infrared small target segmentation network and application deployment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-13.
Get Citation
Copy Citation Text
YANG Xin-yu, YANG Xiao-mei, FANG Xuan. Multi-scale cascaded fusion network for infrared small target segmentation[J]. Laser & Infrared, 2025, 55(3): 436
Category:
Received: Jun. 3, 2024
Accepted: Apr. 23, 2025
Published Online: Apr. 23, 2025
The Author Email: YANG Xiao-mei (yangxiaomei@scu.edu.cn)