Geological Journal of China Universities, Volume. 31, Issue 3, 324(2025)
Grain-size Characteristics and the Implications for Sedimentary Facies of the Cenozoic Sediments in the Dahonggou Section of the Qaidam Basin
[25] [25] Bush M A, Saylor J E, Horton B K, et al. 2016. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures[J]. Lithosphere, 8(1): 58-82.
[26] [26] Cheng F, Garzione C, Jolivet M, et al. 2018. A new sediment accumulation model of Cenozoic depositional ages from the Qaidam Basin, Tibetan Plateau[J]. Journal of Geophysical Research: Earth Surface, 123(11): 3101-3121.
[27] [27] Cheng F, Jolivet M, Guo Z J, et al. 2021. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review[J]. Earth-Science Reviews, 220: 103730.
[28] [28] Dietze E, Hartmann K, Diekmann B, et al. 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 243-244: 169-180.
[29] [29] Folk R L and Ward W C. 1957. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Research. 27(1): 3-26.
[30] [30] Fu K D, Fang X M, Gao J P, et al. 2007. Response of grain size of Quaternary gravels to climate and tectonics in the northern Tibetan Plateau[J]. Science in China Series D-Earth Sciences, 50(1): 81-91.
[31] [31] Ji J L, Zhang K X, Clift P D, et al. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau[J]. Gondwana Research, 46: 141-155.
[32] [32] Jiang H C and Ding Z L. 2010. Eolian grain-size signature of the Sikouzi lacustrine sediments (Chinese Loess Plateau): Implications for Neogene evolution of the East Asian winter monsoon[J]. Geological Society of America Bulletin, 122(5-6): 843-854.
[33] [33] Li Y, Wang N A, Morrill C, et al. 2009. Environmental change implied by the relationship between pollen assemblages and grain-size in N.W. Chinese lake sediments since the Late Glacial[J]. Review of Palaeobotany and Palynology, 154(1): 54-64.
[34] [34] Liu B, Zhao H, Yang F, et al. 2023. A new aeolian activity proxy based on analysis of the grain size characteristics of surface soils across the Tengger Desert, northwest China, and its application to a Quaternary aeolian succession[J]. Palaeogeography Palaeoclimatology Palaeoecology, 622: 111594.
[35] [35] Liu X X, Vandenberghe J, An Z S, et al. 2016. Grain size of Lake Qinghai sediments: Implications for riverine input and Holocene monsoon variability[J]. Palaeogeography Palaeoclimatology Palaeoecology, 449: 41-51.
[36] [36] Lu R J, Jia F F, Gao S Y, et al. 2015a. Holocene aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai-Tibetan Plateau[J]. Palaeogeography Palaeoclimatology Palaeoecology, 430: 1-10.
[37] [37] Lu Y, Fang X M, Appel E, et al. 2015b. A 7.3-1.6 Ma grain size record of interaction between anticline uplift and climate change in the western Qaidam Basin, NE Tibetan Plateau[J]. Sedimentary Geology, 319: 40-51.
[38] [38] Mtivier F, Gaudemer Y, Tapponnier P, et al. 1998. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China[J]. Tectonics, 17(6): 823-842.
[39] [39] Paterson G A and Heslop D. 2015. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 16(12): 4494-4506.
[40] [40] Qiang M R, Jin Y X, Liu X X, et al. 2016. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications[J]. Quaternary Science Reviews, 132: 57-73.
[41] [41] Rieser A B, Liu Y, Genser J, et al. 2006. Ar-40/Ar-39 ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China[J]. Geological Society of America Bulletin, 118(11-12): 1522-1534.
[42] [42] Sahu B K. 1964. Depositional mechanisms from the size analysis of clastic sediments[J]. Journal of Sedimentary Research, 34(1): 73-83
[43] [43] Song B W, Zhang K X, Hou Y F, et al. 2019. New insights into the provenance of Cenozoic strata in the Qaidam Basin, northern Tibet: Constraints from combined U-Pb dating of detrital zircons in recent and ancient fluvial sediments[J]. Palaeogeography Palaeoclimatology Palaeoecology, 533: 109254.
[44] [44] Song B W, Zhang K X, Lu J F, et al. 2013. The middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift[J]. Canadian Journal of Earth Sciences, NRC Research Press, 50(2): 183-196.
[45] [45] Sun D H, Bloemendal J, Rea D K, et al. 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications[J]. Catena, 55(3): 325-340.
[46] [46] Sun D H, Bloemendal J, Rea D K, et al. 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 152(3): 263-277.
[47] [47] Sun D H, Su R X, Bloemendal J, et al. 2008. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 264(1): 39-53.
[48] [48] Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677.
[49] [49] Udden J A. 1914. Mechanical composition of clastic sediments[J]. Geological Society of America Bulletin, 25(1): 655-744.
[50] [50] Visher G S. 1969. Grain-size distributions and depositional processes[J]. Journal of Sedimentary Petrology, 39(3): 1074-1106.
[51] [51] Wang W T, Zheng W J, Zhang P Z, et al. 2017. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 8: 15887.
[52] [52] Wei Y Y, Xiao A C, Wu L, et al. 2016. Temporal and spatial patterns of Cenozoic deformation across the Qaidam Basin, Northern Tibetan Plateau[J]. Terra Nova, 28(6): 409-418.
[53] [53] Weltje G J. 1997. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 29(4): 503-549.
[54] [54] Wentworth C K. 1922. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 30(5): 377-392.
[55] [55] Xiao J L, Chang Z G, Fan J W, et al. 2012. The link between grain-size components and depositional processes in a modern clastic lake: Grain-size components of Hulun Lake sediments[J]. Sedimentology, 59(3): 1050-1062.
[56] [56] Xu Y, Li J X, Pan F, et al. 2018. Late Neogene aridification and wind patterns in the Asian interior: Insight from the grain-size of eolian deposits in Altun Shan, northern Tibetan Plateau[J]. Palaeogeography Palaeoclimatology Palaeoecology, 511: 532-540.
[57] [57] Yin A, Dang Y Q, Zhang M, et al. 2008a. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 120(7-8): 847-876.
[58] [58] Yin A, Dang Y Q, Wang L C, et al. 2008b. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin[J]. Geological Society of America Bulletin, 120(7-8): 813-846.
Get Citation
Copy Citation Text
PAN Shaomin, AN Kaixuan, HU Yihao, ZHANG Wenjing, LIN Xiubin. Grain-size Characteristics and the Implications for Sedimentary Facies of the Cenozoic Sediments in the Dahonggou Section of the Qaidam Basin[J]. Geological Journal of China Universities, 2025, 31(3): 324
Received: May. 9, 2024
Accepted: Aug. 21, 2025
Published Online: Aug. 21, 2025
The Author Email: AN Kaixuan (kxan@zju.edu.cn)