Acta Optica Sinica, Volume. 44, Issue 11, 1130003(2024)

Quantitative Analysis of CO2 Infrared Absorption Spectrum Based on Improved Particle Swarm Optimization-Back Propagation Neural Network

Xuyang Wu1, Gangyun Guan1, Zhiwei Liu2, Bingjie Zhu1, Zixun Geng1, Chuantao Zheng1、*, Guofeng Yan2、**, Yu Zhang1, and Yiding Wang1
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin, China
  • 2Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China
  • show less
    Figures & Tables(11)
    Structure diagram of IPSO-BPNN algorithm
    Flow chart of IPSO-BPNN algorithm
    Structure diagram of CO2 sensing system based on optical frequency comb direct absorption spectrometry
    Pretreatment process of spectra. (a) Absorption spectrum and background spectrum; (b) original absorbance spectrum and denoised absorbance spectrum; (c) denoised absorbance spectrum and fitting baseline; (d) baseline-corrected absorbance spectrum
    Partial absorbance spectra before and after pretreatment. (a) Partial original absorbance spectra; (b) partial preprocessed absorbance spectra
    Optimization processes of IPSO-BPNN and PSO-BPNN
    Iteration diagram of MSEs of validation set for IPSO-BPNN, PSO-BPNN, and BPNN
    Inversion results of each gas concentration inversion model. (a) Inversion results of IPSO-BPNN; (b) inversion results of PSO-BPNN; (c) inversion results of BPNN; (d) inversion results of SVM; (e) inversion results of ELM; (f) inversion results of MAE
    • Table 1. Parameters of PSO algorithm and IPSO algorithm

      View table

      Table 1. Parameters of PSO algorithm and IPSO algorithm

      AlgorithmParameter
      PSO

      M=10, tmax=100, ω=0.6,

      c1=1.5, c2=1.5,xmax=1.5, vmax=0.2

      IPSO

      M=10, tmax=100,ωmax=0.9, ωmin=0.4,

      c1max=1.5, c1min=0.8,c2max=2.5, c2min=1.5,

      xmax=1.5, v1=0.2, v2=0.05

    • Table 2. Experimental data set

      View table

      Table 2. Experimental data set

      Data setTraining setValidation setTesting set
      Concentration2%, 4%, 6%, 8%, 10%, 14%, 16%, 20%, 22%, 26%, 28%12%, 18%, 24%3%, 5%, 7%, 9%, 11%, 13%, 15%, 17%, 19%, 21%, 23%, 25%, 27%, 29%
      Sample number551514
    • Table 3. Inversion performance of each gas concentration inversion model

      View table

      Table 3. Inversion performance of each gas concentration inversion model

      Evaluation indicatorModel
      IPSO-BPNNPSO-BPNNBPNNSVMELMMAE
      MSE0.000001950.000005250.00008410.000005160.00014260.0001862
      MAPE0.01120.01840.02190.02010.03040.0483
      R20.99970.99890.99870.99920.99210.9973
      Running time /s0.0046340.0047390.0045720.0015150.0022420.000020
    Tools

    Get Citation

    Copy Citation Text

    Xuyang Wu, Gangyun Guan, Zhiwei Liu, Bingjie Zhu, Zixun Geng, Chuantao Zheng, Guofeng Yan, Yu Zhang, Yiding Wang. Quantitative Analysis of CO2 Infrared Absorption Spectrum Based on Improved Particle Swarm Optimization-Back Propagation Neural Network[J]. Acta Optica Sinica, 2024, 44(11): 1130003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Jan. 2, 2024

    Accepted: Mar. 14, 2024

    Published Online: May. 28, 2024

    The Author Email: Zheng Chuantao (zhengchuantao@jlu.edu.cn), Yan Guofeng (yanguofeng@zhejianglab.com)

    DOI:10.3788/AOS232020

    CSTR:32393.14.AOS232020

    Topics