Laser Technology, Volume. 46, Issue 3, 337(2022)
Sensitization design of liquid dual parameter sensor based on fiber grating
[1] [1] PALASAGARAM J N, RAMADOSS R. Liquid crystal polymer-based MEMS capacitive pressure sensor[J]. Proceedings of the SPIE, 2005, 5798:190-197.
[2] [2] LI Ch, ZHANG Ch, LI J, et al. Liquid level and temperature sensor based on an asymmetrical fiber Mach-Zehnder interferometer combined with a fiber Bragg grating[J]. Optics Communications, 2016,372: 196-200.
[3] [3] MAJUNDER M, GANGOPADHYAY T K, CHAKRABORTY A K, et al. Fiber Bragg gratings in structural health monitoring—Present status and applications[J]. Sensors and Actuators, 2008,A147(1):150-164.
[4] [4] MIHALOVS J. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12(12):1898-1918.
[5] [5] JASJOT K S, NEENA G, DIVYA D, et al. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review [J].Optical Engineering,2020, 59(6):060901.
[6] [6] WOYESSA G, PEDERSEN JKM, NIELSEN K, et al. Enhanced pre-ssure and thermal sensitivity of polymer optical fiber Bragg grating sensors[J]. Optics & Laser Technology, 2020, 130: 106357.
[7] [7] LIANG M F, FANG X Q, NING Y S. Temperature compensation fiber Bragg grating pressure sensor based on plane diaphragm[J]. Photonic Sensors, 2018, 8(2):157-167.
[8] [8] FAN Q G, ZHEN A J, FENG D Q, et al. Highly sensitive FBG pressure sensor based on square diaphragm[J]. Optik—International Journal for Light and Electron Optics, 2021, 225: 165559.
[9] [9] VORATHIN E, HAFIZI Z M, AIZZUDDIN A M, et al. A natural rubber diaphragm-based transducer for simultaneous pressure and temperature measurement by using a single FBG[J]. Optical Fiber Technology, 2018, 45: 8-13.
[10] [10] ZHAO L J, ZHAO H Y, XU Zh N. Design of high-sensitivity hydrostatic pressure sensor based on Brillouin dynamic grating[J]. Acta Photonica Sinica, 2021, 50(2): 206001(in Chinese).
[11] [11] LIANG M F, FANG X Q, WANG G, et al. A fiber Bragg grating pressure sensor with temperature compensation based on diaphragm-cantilever structure[J]. Optik—International Journal for Light and Electron Optics, 2017, 145: 503-512.
[12] [12] VENKATA S C S V, SAIDI R P, SANJEEV A, et al. Design and development of pressure sensor based on fiber Bragg grating (FBG) for ocean applications[J]. The European Physical Journal-Applied Physics, 2020, 90: 30501.
[13] [13] LIU M Y, WU Y B, DU C R, et al. FBG based liquid pressure sensor for distributed measurement with a single channel in liquid environment [J]. IEEE Sensors Journal, 2020, 20(16): 9155-9161.
[14] [14] UMA K C R, DHANALAKSHMI S, KUMAR R, et al. Development and experimental validation of a nuttall apodized fiber Bragg grating sensor with a hydrophobic polymer coating suitable for monitoring sea surface temperature[J]. Optical Fiber Technology, 2020, 56:102176.
[15] [15] GAO X K, NING T G, ZHANG CH B, et al. A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing [J]. Optics Communications, 2020, 454: 124441.
[16] [16] ZHU L Q, YANG R T, ZHANG Y M, et al. Metallic-packaging fiber Bragg grating sensor based on ultrasonic welding for strain-insensitive temperature measurement[J]. The Review of Scientific Instruments,2018,89(4): 045005.
[17] [17] LIU W L, GUO Y X, XIONG L, et al. Fiber Bragg grating based displacement sensors: State of the art and trends [J]. Sensor Review, 2019, 39(1): 89-98.
[18] [18] WU H, LIN Q J, JIANG Zh D, et al. A temperature and strain sensor based on a cascade of double fiber Bragg grating[J]. Measurement Science and Technology, 2019, 30(6): 065104.
[19] [19] ZHANG D P, WANG J, WANG Y J. Experimental study on fiber Bragg grating temperature sensor and its pressure sensitivity[J]. International Journal of Information and Communication Technology, 2018, 13(4): 509-517.
[20] [20] KUANG Y, GUO Y X, XIONG L, et al. Packaging and temperature compensation of fiber bragg grating for strain sensing: A survey [J]. Photonic Sensors, 2018, 8(4): 320-331.
[21] [21] UMESH S, DAEGIL K, HYUNJIN K, et al. Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions[J]. Applied Optics, 2018, 57(3) : 492-497.
[22] [22] CHENG X Sh, QIU W W, WU W X, et al. High-sensitivity temperature sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber[J]. Chinese Optics Letters, 2011, 9(2) :020602.
[23] [23] HUANG H Y. Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement[J]. Transactions of the Institute of Measurement and Control, 2009,31(3/4): 247-257.
[24] [24] ZHAO G F. Theory of structural reliability[M]. Beijing: China Architecture and Building Press, 2000:5-6 (in Chinese).
[25] [25] LI Y Q, GUO W, XIE Y. Temperature and strain characteristics of fiber Bragg grating packaged by brass slice[C]//2010 International Conference on Measuring Technology and Mechatronics Automation. New York,USA:IEEE,2010: 734-737.
Get Citation
Copy Citation Text
HUA Ziming, LI Yongqian, WANG Shaokang, WEN Fangfang, FAN Haijun. Sensitization design of liquid dual parameter sensor based on fiber grating[J]. Laser Technology, 2022, 46(3): 337
Category:
Received: May. 6, 2021
Accepted: --
Published Online: Jun. 14, 2022
The Author Email: LI Yongqian (liyq@ncepu.edu.cn)