Infrared and Laser Engineering, Volume. 51, Issue 8, 20210774(2022)

Photoacoustic image reconstruction of femtosecond laser filaments based on multilinear array detection

Qingwei Zeng1, Lei Liu1、*, Shuai Hu1, Shulei Li1, and Ming Chen2
Author Affiliations
  • 1College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
  • 231110 Troops of PLA, Nanjing 211101, China
  • show less
    References(38)

    [1] A Couairon, A Mysyrowicz. Femtosecond filamentation in transparent media. Physics Reports, 441, 47-189(2007).

    [2] Y Hu, J Nie, K Hu, et al. Air filamentation characteristics of ring Airy femtosecond laser beam with different background energies. Infrared and Laser Engineering, 46, 0806005(2017).

    [3] J Kasparian, M Rodriguez, G Mejean, et al. White light filaments for atmospheric analysis. Science, 301, 61-64(2003).

    [4] G Point, L Arantchouk, E Thouin, et al. Long-lived laser-induced arc discharges for energy channeling applications. Scientific Reports, 7, 13801(2017).

    [5] T Produit, P Walch, G Schimmel, et al. HV discharges triggered by dual- and triple-frequency laser filaments. Optics Express, 27, 11339-11347(2019).

    [6] H Y Sun, Y L Liu, J J Ju, et al. Picosecond laser-induced water condensation in a cloud chamber. Optics Express, 24, 20494-20506(2016).

    [7] P Rohwetter, J Kasparian, K Stelmaszczyk, et al. Laser-induced water condensation in air. Nature Photonics, 4, 451-456(2010).

    [8] Qingwei Zeng, Taichang Gao, Lei Liu, et al. Advances in mechanism research of femtosecond laser filamentation induced hydrometeors formation. Infrared and Laser Engineering, 48, 0406002(2019).

    [9] S L Chin, T J Wang, C Marceau, et al. Advances in intense femtosecond laser filamentation in air. Laser Physics, 22, 1-53(2012).

    [10] J P Wolf. Short pulse lasers for weather control. Reports on Progress in Physics Physical Society, 81, 026001(2018).

    [11] Q W Zeng, L Liu, J J Ju, et al. Numerical investigation on the heat deposition characteristics of femtosecond laser pulses undergoing multiple filaments. Physica Scripta, 95, 085605(2020).

    [12] C L Ma, M Z Jia, W B Lin, et al. Extending optical filaments of annular beams via square root spatial phase modulation. Optics Communications, 458, 124828(2020).

    [13] Z F Feng, W Li, X C Yu, et al. Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air. Optics Express, 24, 6381-6390(2016).

    [14] Y E Geints, A A Zemlyanov. Single and multiple filamentation of multiterawatt CO2-laser pulses in air: Numerical simulations. Journal of the Optical Society of America B, 31, 788-797(2014).

    [15] Zuoqiang Hao, Jin Yu, Jie Zhang, et al. Acoustic diagnostics of plasma channels in air induced by intense femtosecond laser pulses. Acta Phys Sin, 54, 1290-1294(2005).

    [16] A Velten, S S Andreas, J C Diels, et al. Videos of light filamentation in air. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094020(2015).

    [17] B Zhou, S Akturk, B Prade, et al. Revival of femtosecond laser plasma filaments in air by a nanosecond laser. Optics Express, 17, 11450-11456(2009).

    [18] Zuoqiang Hao, Jie Zhang, Jin Yu, et al. Fluorescence measure-ment and acoustic diagnostics of plasma channels in air. Acta Phys Sin, 55, 299-302(2006).

    [19] [19] Rumiantsev B, Mareev E I, Bychkov A, et al. Photoacoustic optical imaging of the femtosecond filament in water [C]Proceedings of SPIE, 2019, 11026: 1102606.

    [20] G Point, Y Brelet, A Houard, et al. Superfilamentation in air. Physical Review Letters, 223902(2014).

    [21] Y H Chen, S Varma, T M Antonsen, et al. Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments. Physical Review Letters, 105, 215005(2010).

    [22] S Tzortzokis, G Méchain, G Patalano, et al. Coherent subterahertz radiation from femtosecond infrared filaments in air. Optics Letters, 27, 1944-1946(2002).

    [23] E I Mareeva, E A Migal, F V Potemkin. Ultrafast third harmonic generation imaging of microplasma at the threshold of laser-induced plasma formation in solids. Applied Physics Letters, 114, 031106(2019).

    [24] B V Rumiantsev, E I Mareev, A S Bychkov, et al. Three-dimensional hybrid optoacoustic imaging of the laser-induced plasma and deposited energy density under optical breakdown in water. Applied Physics Letters, 118, 011109(2021).

    [25] J Yu, D Mondelain, J Kasparian, et al. Sonographic probing of laser filaments in air. Applied Optics, 42, 7117-7120(2003).

    [26] V Jukna, A Jarnac, C Milián, et al. Underwater acoustic wave generation by flamentation of terawatt ultrashort laser pulses. Physical Review E, 93, 063106(2016).

    [27] E W Rosenthal, J P Palastro, N Jhajj, et al. Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index. Journal of Physics B:Atomic, Molecular and Optical Physics, 48, 094011-094019(2015).

    [28] G Point, E Thouin, A Mysyrowicz, et al. Energy deposition from focused terawatt laser pulses in air undergoing multiflamentation. Optics Express, 24, 6271-6282(2016).

    [29] A S Bychkov, E B Cherepetskaya, A A Karabutov, et al. Laser optoacoustic tomography for the study of femtosecond laser filaments in air. Laser Physics Letters, 13, 085401(2016).

    [30] E I Mareev, K V Lvov, B V Rumiantsev, et al. Effect of pulse duration on the energy delivery under nonlinear propagation of tightly focused Cr: forsterite laser radiation in bulk silicon. Laser Physics Letters, 17, 015402(2020).

    [31] F V Potemkin, E I Mareev, B V Rumiantsev, et al. Two-dimensional photoacoustic imaging of femtosecond filament in water. Laser Physics Letters, 15, 075403(2018).

    [32] B E Treeby, E S Wise, F Kuklis, et al. Nonlinear ultrasound simulation in an axisymmetric coordinate system using a k-space pseudospectral method. The Journal of the Acoustical Society of America, 148, 2288-2300(2020).

    [33] M Tabei, T D Mast, R C Waag. A k-space method for coupled first-order acoustic propagation equations. The Journal of the Acoustical Society of America, 111, 53-63(2002).

    [34] B E Treeby, E S Wise, B T Cox. Nonstandard Fourier pseudospectral time domain (PSTD) schemes for partial differential equations. Communications in Computational Physics, 24, 623-634(2017).

    [35] B E Treeby, J Jaros, A P Rendell, et al. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. Journal of the Acoustical Society of America, 131, 4324-4336(2012).

    [36] M H Xu, L V Wang. Universal back-projection algorithm for photoacoustic computed tomography. Physical Review E, 71, 016706(2005).

    [37] I Steinberg, J Kim, M K Schneider, et al. Superiorized photo-acoustic non-negative reconstruction (SPANNER) for clinical photoacoustic imaging. IEEE Transactions on Medical Imaging, 40, 1888-1897(2021).

    [38] W Zhou, A C Bovik, H R Sheikh, et al. Image quality assess-ment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).

    Tools

    Get Citation

    Copy Citation Text

    Qingwei Zeng, Lei Liu, Shuai Hu, Shulei Li, Ming Chen. Photoacoustic image reconstruction of femtosecond laser filaments based on multilinear array detection[J]. Infrared and Laser Engineering, 2022, 51(8): 20210774

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Oct. 22, 2021

    Accepted: Jan. 21, 2022

    Published Online: Jan. 9, 2023

    The Author Email:

    DOI:10.3788/IRLA20210774

    Topics