Infrared and Laser Engineering, Volume. 51, Issue 7, 20220221(2022)

Advances in the compensation of distorted vortex beams through deep learning (invited)

Jiaqi Wang, Shiyao Fu, Lang Li, Yingchi Guo, Chen Li, and Chunqing Gao
Author Affiliations
  • School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(97)

    [1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [2] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161(2011).

    [3] Vasara A, Turunen J, Friberg A T. Realization of general nondiffracting beams with computer-generated holograms[J]. JOSA A, 6, 1748-1754(1989).

    [4] Vettenburg T, Dalgarno H I C, Nylk J, et al. Light-sheet microscopy using an Airy beam[J]. Nature Methods, 11, 541-544(2014).

    [5] Wang J. Advances in communications using optical vortices[J]. Photonics Research, 4, B14(2016).

    [6] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66(2015).

    [7] Yu S. Potentials and challenges of using orbital angular momentum communications in optical interconnects[J]. Optics Express, 23, 3075(2015).

    [8] Willner A E, Ren Y, Xie G, et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20150439(2017).

    [9] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [10] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 12, 5448-5456(2004).

    [11] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).

    [12] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).

    [13] Chen M, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Optics Letters, 38, 4919(2013).

    [14] Gecevičius M, Drevinskas R, Beresna M, et al. Single beam optical vortex tweezers with tunable orbital angular momentum[J]. Applied Physics Letters, 104, 231110(2014).

    [15] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).

    [16] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 341, 537-540(2013).

    [17] Zhang W, Gao J, Zhang D, et al. Free-space remote sensing of rotation at the photon-counting level[J]. Physical Review Applied, 10, 044014(2018).

    [18] Fu S, Wang T, Zhang Z, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions[J]. Optics Express, 25, 20098(2017).

    [19] Lavery M P J, Barnett S M, Speirits F C, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body[J]. Optica, 1, 1-4(2014).

    [20] Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear Doppler effects[J]. Laser & Photonics Reviews, 11, 1700183(2017).

    [21] Ren Y, Huang H, Xie G, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Optics Letters, 38, 4062(2013).

    [22] Rodenburg B, Lavery M P J, Malik M, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum[J]. Optics Letters, 37, 3735-3737(2012).

    [23] Fu S, Gao C. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams[J]. Photonics Research, 4, B1(2016).

    [24] Malik M, O’Sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[J]. Optics Express, 20, 13195-13200(2012).

    [25] Vorontsov M A, Carhart G W, Cohen M, et al. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration[J]. JOSA A, 17, 1440-1453(2000).

    [26] Roorda A, Romero-Borja F, Iii W J D, et al. Adaptive optics scanning laser ophthalmoscopy[J]. Optics Express, 10, 405-412(2002).

    [27] Nicolle M, Fusco T, Rousset G, et al. Improvement of Shack–Hartmann wave-front sensor measurement for extreme adaptive optics[J]. Optics Letters, 29, 2743-2745(2004).

    [28] Cha J-W, Ballesta J, So P T C. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy[J]. Journal of Biomedical Optics, 15, 046022(2010).

    [29] Liang J, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. JOSA A, 14, 2884-2892(1997).

    [30] Padgett M J. Orbital angular momentum 25 years on [Invited][J]. Optics Express, 25, 11265-11274(2017).

    [31] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).

    [32] Ren Y, Xie G, Huang H, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 39, 2845(2014).

    [33] Ren Y, Xie G, Huang H, et al. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link[J]. Optica, 1, 376-382(2014).

    [34] Li S, Wang J. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics[J]. Optics Letters, 41, 1482-1485(2016).

    [35] Chen S, Li S, Zhao Y, et al. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation[J]. Optics Letters, 41, 4680-4683(2016).

    [36] Fu S, Wang T, Zhang Z, et al. Pre-correction of distorted Bessel–Gauss beams without wavefront detection[J]. Applied Physics B, 123, 275(2017).

    [37] Fu S, Zhang S, Wang T, et al. Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg–Saxton algorithm[J]. Optics Letters, 41, 3185-3188(2016).

    [38] [38] Ren Y, Huang H, Yang JY, et al. Crection of phase disttion of an OAM mode using GS algithm based phase retrieval [C]Conference on Lasers ElectroOptics, OSA, 2012: CF3 I. 4.

    [39] Li M, Li Y, Han J. Gerchberg–Saxton algorithm based phase correction in optical wireless communication[J]. Physical Communication, 25, 323-327(2017).

    [40] Fu S, Wang T, Zhang S, et al. Non-probe compensation of optical vortices carrying orbital angular momentum[J]. Photonics Research, 5, 251-255(2017).

    [41] Xie Z, Ma H, He X, et al. Adaptive piston correction of sparse aperture systems with stochastic parallel gradient descent algorithm[J]. Optics Express, 26, 9541-9551(2018).

    [42] Liang Y, Liang Y, Su X, et al. Adaptive turbulence compensation and fast auto-alignment link for free-space optical communications[J]. Optics Express, 29, 40514-40523(2021).

    [43] Xie G, Ren Y, Huang H, et al. Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm[J]. Optics Letters, 40, 1197(2015).

    [44] Sephton B, Dudley A, Forbes A. Revealing the radial modes in vortex beams[J]. Applied Optics, 55, 7830-7835(2016).

    [45] Vorontsov M A, Sivokon V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. JOSA A, 15, 2745-2758(1998).

    [46] Kolmogorov A N. Local structure of turbulence in an incompressible viscous fluid at very high reynolds numbers[J]. Soviet Physics Uspekhi, 10, 734(1968).

    [47] Davis J I. Consideration of Atmospheric turbulence in laser systems design[J]. Applied Optics, 5, 139-147(1966).

    [48] Fried D L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures[J]. JOSA, 56, 1372-1379(1966).

    [49] Harding C M, Johnston R A, Lane R G. Fast simulation of a Kolmogorov phase screen[J]. Applied Optics, 38, 2161-2170(1999).

    [50] Lane R G, Glindemann A, Dainty J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 2, 209-224(1992).

    [51] Noll R J. Zernike polynomials and atmospheric turbulence[J]. JOSA, 66, 207-211(1976).

    [52] [52] Du J, Li S, Zhao Y, et al. Demonstration of Mary encodingdecoding using visiblelight Bessel beams carrying bital angular momentum (OAM) f freespace obstructionfree optical communications [C]Optical Fiber Communications Conference Exhibition (OFC), 2015: 1–3.

    [53] Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions[J]. Optics Letters, 40, 4827-4830(2015).

    [54] Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S, et al. Orbital angular momentum of a high-order Bessel light beam[J]. Journal of Optics B: Quantum and Semiclassical Optics, 4, S82-S89(2002).

    [55] Liu X, Zhai Y, Fu S, et al. Selection of full Poincaré beams with higher robustness in turbulent atmosphere (Invited)[J]. Infrared and Laser Engineering, 50, 20210242(2021).

    [56] Zhang J, Zhai Y, Fu S, et al. Propagation properties of radially-polarized vector beams under a turbulent atmosphere[J]. Acta Optica Sinica, 40, 1101001(2020).

    [57] Yu Z, Ma H, Du S. Adaptive near-field beam shaping based on simulated annealing algorithm[J]. Acta Optica Sinica, 31, 0314003(2011).

    [58] Yin X, Chang H, Cui X, et al. Adaptive turbulence compensation with a hybrid input–output algorithm in orbital angular momentum-based free-space optical communication[J]. Applied Optics, 57, 7644-7650(2018).

    [59] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [60] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [61] [61] Ronneberger O, Fischer P, Brox T. U: Convolutional wks f biomedical image segmentation [C]Medical Image Computing ComputerAssisted InterventionMICCAI 2015, 2015: 234241.

    [62] Roy A G, Conjeti S, Karri S P K, et al. ReLayNet: Retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks[J]. Biomedical Optics Express, 8, 3627-3642(2017).

    [63] Chen H, Zhang Y, Zhang W, et al. Low-dose CT via convolutional neural network[J]. Biomedical Optics Express, 8, 679-694(2017).

    [64] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 518, 529-533(2015).

    [65] Lee C S, Tyring A J, Deruyter N P, et al. Deep-learning based, automated segmentation of macular edema in optical coherence tomography[J]. Biomedical Optics Express, 8, 3440-3448(2017).

    [66] Fang L, Cunefare D, Wang C, et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search[J]. Biomedical Optics Express, 8, 2732-2744(2017).

    [67] Wang K, Dou J, Kemao Q, et al. Y-Net: A one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters, 44, 4765-4768(2019).

    [68] Rivenson Y, Zhang Y, Günaydın H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141-17141(2018).

    [69] Wu Y, Rivenson Y, Zhang Y, et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 5, 704-710(2018).

    [70] Wang K, Li Y, Kemao Q, et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 27, 15100-15115(2019).

    [71] Barbastathis G, Ozcan A, Situ G. On the use of deep learning for computational imaging[J]. Optica, 6, 921-943(2019).

    [72] Rahmani B, Loterie D, Konstantinou G, et al. Multimode optical fiber transmission with a deep learning network[J]. Light: Science & Applications, 7, 69(2018).

    [73] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).

    [74] Borhani N, Kakkava E, Moser C, et al. Learning to see through multimode fibers[J]. Optica, 5, 960-966(2018).

    [75] Wang F, Wang F, Wang H, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).

    [76] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 5, 803-813(2018).

    [77] Li Y, Xue Y, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [78] Nguyen T, Nguyen T, Xue Y, et al. Deep learning approach for Fourier ptychography microscopy[J]. Optics Express, 26, 26470-26484(2018).

    [79] Dong C, Loy C C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [80] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM: Super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458-464(2018).

    [81] Rivenson Y, Göröcs Z, Günaydin H, et al. Deep learning microscopy[J]. Optica, 4, 1437-1443(2017).

    [82] Huang T, Zhang Q, Liu J, et al. Adversarial attacks on deep-learning-based SAR image target recognition[J]. Journal of Network and Computer Applications, 162, 102632(2020).

    [83] Wang D, Zhang M, Li J, et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning[J]. Optics Express, 25, 17150-17166(2017).

    [84] [84] He K, Zhang X, Ren S, et al. Deep residual learning f image recognition [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 770778.

    [85] [85] Sun Y, Chen Y, Wang X, et al. Deep learning face representation by joint identificationverification [C]Advances in Neural Infmation Processing Systems, 2014, 27: 19881996.

    [86] Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240(2019).

    [87] Andersen T, Owner-Petersen M, Enmark A. Neural networks for image-based wavefront sensing for astronomy[J]. Optics Letters, 44, 4618(2019).

    [88] Jin Y, Zhang Y, Hu L, et al. Machine learning guided rapid focusing with sensor-less aberration corrections[J]. Optics Express, 26, 30162(2018).

    [89] Ma H, Liu H, Qiao Y, et al. Numerical study of adaptive optics compensation based on convolutional neural networks[J]. Optics Communications, 433, 283-289(2019).

    [90] Gao J, Anantrasirichai N, Bull D. Atmospheric turbulence removal using convolutional neural network[J]. arXiv, eess IV, 1912.11350(2019).

    [91] Tian Q, Lu C, Liu B, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system[J]. Optics Express, 27, 10765(2019).

    [92] Wang K, Zhang M, Tang J, et al. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX, 2, 8(2021).

    [93] Zhang Y, Wu C, Song Y, et al. Machine learning based adaptive optics for doughnut-shaped beam[J]. Optics Express, 27, 16871(2019).

    [94] Zhai Y, Fu S, Zhang J, et al. Turbulence aberration correction for vector vortex beams using deep neural networks on experimental data[J]. Optics Express, 28, 7515(2020).

    [95] Xiong W, Wang P, Cheng M, et al. Convolutional neural network based atmospheric turbulence compensation for optical orbital angular momentum multiplexing[J]. Journal of Lightwave Technology, 38, 1712-1721(2020).

    [96] Liu J, Wang P, Zhang X, et al. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication[J]. Optics Express, 27, 16671(2019).

    [97] Wang X, Wu T, Dong C, et al. Integrating deep learning to achieve phase compensation for free-space orbital-angular-momentum-encoded quantum key distribution under atmospheric turbulence[J]. Photonics Research, 9, B9(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jiaqi Wang, Shiyao Fu, Lang Li, Yingchi Guo, Chen Li, Chunqing Gao. Advances in the compensation of distorted vortex beams through deep learning (invited)[J]. Infrared and Laser Engineering, 2022, 51(7): 20220221

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Invited paper

    Received: Mar. 25, 2022

    Accepted: --

    Published Online: Dec. 20, 2022

    The Author Email:

    DOI:10.3788/IRLA20220221

    Topics