Bulletin of the Chinese Ceramic Society, Volume. 44, Issue 6, 2306(2025)

Simulation on Effect of Bubbling on Melting Performance of Ceramic Melter for High-Level Liquid Waste Vitrification

XU Hongmei1, QU Xiaorui2, LI Lifeng1, ZHAO Qingbin2, NIU Chenchen1, and XU Kai1、*
Author Affiliations
  • 1State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • 2China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
  • show less
    References(24)

    [1] [1] KUHLMAN K L, BARTOL J, CARTER A, et al. Scenario development for safety assessment in deep geologic disposal of high-level radioactive waste and spent nuclear fuel: a review[J]. Risk Analysis, 2024, 44(8): 1850-1864.

    [4] [4] OJOVAN M I. Vitrification as a key solution for immobilisation within nuclear waste management[J]. Arabian Journal for Science and Engineering, 2025, 50(5): 3253-3261.

    [5] [5] GUILLEN D P, FERKL P, POKORNY R, et al. Numerical modeling of Joule heated ceramic melter[J]. Materials Letters, 2024, 362: 136201.

    [6] [6] YANG Y, WANG F W, KANG L J, et al. Research progress on high-level waste vitrification based on Joule heating ceramic melter[J]. Annals of Nuclear Energy, 2025, 216: 111273.

    [8] [8] XU K, HRMA P, RICE J A, et al. Conversion of nuclear waste to molten glass: cold-cap reactions in crucible tests[J]. Journal of the American Ceramic Society, 2016, 99(9): 2964-2970.

    [9] [9] FERKL P, HRMA P, KLOUEK J, et al. Cold-cap structure in a slurry-fed electric melter[J]. International Journal of Applied Glass Science, 2024, 15(1): 73-87.

    [10] [10] XU K, HRMA P, RICE J, et al. Melter feed reactions atT≤700 ℃ for nuclear waste vitrification[J]. Journal of the American Ceramic Society, 2015, 98(10): 3105-3111.

    [11] [11] GUILLEN D P, LEE S, HRMA P, et al. Evolution of chromium, manganese and iron oxidation state during conversion of nuclear waste melter feed to molten glass[J]. Journal of Non-Crystalline Solids, 2020, 531: 119860.

    [12] [12] FERKL P, HRMA P, KLOUEK J, et al. Effect of material properties on batch-to-glass conversion kinetics[J]. International Journal of Applied Glass Science, 2023, 14(4): 491-501.

    [13] [13] POKORNY R, HRMA P, LEE S, et al. Modeling batch melting: roles of heat transfer and reaction kinetics[J]. Journal of the American Ceramic Society, 2020, 103(2): 701-718.

    [14] [14] SUNEEL G, KAUSHIK C P, SATYASAI P M, et al. Remote start-up of Joule heated ceramic melter-optimization of design parameters based on experimental and numerical investigations[J]. Journal of Nuclear Science and Technology, 2020, 57(3): 243-252.

    [15] [15] HARIKRISHNAN V, MISHRA V K, RAO P M. Numerical modelling of joule melter for waste vitrification to analyze it’s electrical and thermal characteristics[C]//Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference, 2024: 265-270.

    [16] [16] GUILLEN D P, ABBOUD A W. Sensitivity study of forced convection bubbling in a transparent viscous fluid as a proxy for molten borosilicate glass[J]. Annals of Nuclear Energy, 2019, 125: 38-49.

    [17] [17] HRMA P, FERKL P, POKORNY R, et al. Glass production rate in an electric melter: melting rate correlation and primary foam stability[J]. Materials Letters, 2024, 369: 136689.

    [18] [18] GUILLEN D P, ABBOUD A W. Heat transfer enhancement due to cold cap motion from bubbling in a waste glass melter[J]. Journal of Energy Resources Technology, 2024, 146(1): 011501.

    [19] [19] FERKL P, HRMA P, ABBOUD A, et al. Conversion degree and heat transfer in the cold cap and their effect on glass production rate in an electric melter[J]. International Journal of Applied Glass Science, 2023, 14(2): 318-329.

    [20] [20] GUILLEN D P. Bubbling behavior in a waste glass melter[C]//WIT Transactions on Engineering Sciences. Ancona: WIT Press, 2016: 75-85.

    [21] [21] ABBOUD A W, GUILLEN D P, HRMA P, et al. Heat transfer from glass melt to cold cap: computational fluid dynamics study of cavities beneath cold cap[J]. International Journal of Applied Glass Science, 2021, 12(2): 233-244.

    [22] [22] POKORNY R, KRUGER A A, HRMA P. Mathematical modeling of cold cap: effect of bubbling on melting rate[J]. Ceram Silik, 2014, 58(4): 296-302.

    [23] [23] POKORNY R, HILLIARD Z J, DIXON D R, et al. One-dimensional cold cap model for melters with bubblers[J]. Journal of the American Ceramic Society, 2015, 98(10): 3112-3118.

    [24] [24] LEE S, FERKL P, POKORNY R, et al. Simplified melting rate correlation for radioactive waste vitrification in electric furnaces[J]. Journal of the American Ceramic Society, 2020, 103(10): 5573-5578.

    [25] [25] HWANG S, HWANG Y H, KIM C W. Study on bubbler position optimization of cold crucible induction melter[C]//Proceedings of the Korean Radioactive Waste Society Conference, 2017: 203-204.

    [26] [26] ABASHAR M E E. Implementation of mathematical and computer modelling to investigate the characteristics of isothermal ammonia fluidized bed catalytic reactors[J]. Mathematical and Computer Modelling, 2003, 37(3/4): 439-456.

    [28] [28] LEE S, CUTFORTH D A, MAR D, et al. Melting rate correlation with batch properties and melter operating conditions during conversion of nuclear waste melter feeds to glasses[J]. International Journal of Applied Glass Science, 2021, 12(3): 398-414.

    Tools

    Get Citation

    Copy Citation Text

    XU Hongmei, QU Xiaorui, LI Lifeng, ZHAO Qingbin, NIU Chenchen, XU Kai. Simulation on Effect of Bubbling on Melting Performance of Ceramic Melter for High-Level Liquid Waste Vitrification[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(6): 2306

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 5, 2024

    Accepted: Jul. 30, 2025

    Published Online: Jul. 30, 2025

    The Author Email: XU Kai (kaixu@whut.edu.com)

    DOI:10.16552/j.cnki.issn1001-1625.2025.0113

    Topics