Bulletin of the Chinese Ceramic Society, Volume. 44, Issue 6, 2306(2025)
Simulation on Effect of Bubbling on Melting Performance of Ceramic Melter for High-Level Liquid Waste Vitrification
[1] [1] KUHLMAN K L, BARTOL J, CARTER A, et al. Scenario development for safety assessment in deep geologic disposal of high-level radioactive waste and spent nuclear fuel: a review[J]. Risk Analysis, 2024, 44(8): 1850-1864.
[4] [4] OJOVAN M I. Vitrification as a key solution for immobilisation within nuclear waste management[J]. Arabian Journal for Science and Engineering, 2025, 50(5): 3253-3261.
[5] [5] GUILLEN D P, FERKL P, POKORNY R, et al. Numerical modeling of Joule heated ceramic melter[J]. Materials Letters, 2024, 362: 136201.
[6] [6] YANG Y, WANG F W, KANG L J, et al. Research progress on high-level waste vitrification based on Joule heating ceramic melter[J]. Annals of Nuclear Energy, 2025, 216: 111273.
[8] [8] XU K, HRMA P, RICE J A, et al. Conversion of nuclear waste to molten glass: cold-cap reactions in crucible tests[J]. Journal of the American Ceramic Society, 2016, 99(9): 2964-2970.
[9] [9] FERKL P, HRMA P, KLOUEK J, et al. Cold-cap structure in a slurry-fed electric melter[J]. International Journal of Applied Glass Science, 2024, 15(1): 73-87.
[10] [10] XU K, HRMA P, RICE J, et al. Melter feed reactions atT≤700 ℃ for nuclear waste vitrification[J]. Journal of the American Ceramic Society, 2015, 98(10): 3105-3111.
[11] [11] GUILLEN D P, LEE S, HRMA P, et al. Evolution of chromium, manganese and iron oxidation state during conversion of nuclear waste melter feed to molten glass[J]. Journal of Non-Crystalline Solids, 2020, 531: 119860.
[12] [12] FERKL P, HRMA P, KLOUEK J, et al. Effect of material properties on batch-to-glass conversion kinetics[J]. International Journal of Applied Glass Science, 2023, 14(4): 491-501.
[13] [13] POKORNY R, HRMA P, LEE S, et al. Modeling batch melting: roles of heat transfer and reaction kinetics[J]. Journal of the American Ceramic Society, 2020, 103(2): 701-718.
[14] [14] SUNEEL G, KAUSHIK C P, SATYASAI P M, et al. Remote start-up of Joule heated ceramic melter-optimization of design parameters based on experimental and numerical investigations[J]. Journal of Nuclear Science and Technology, 2020, 57(3): 243-252.
[15] [15] HARIKRISHNAN V, MISHRA V K, RAO P M. Numerical modelling of joule melter for waste vitrification to analyze it’s electrical and thermal characteristics[C]//Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference, 2024: 265-270.
[16] [16] GUILLEN D P, ABBOUD A W. Sensitivity study of forced convection bubbling in a transparent viscous fluid as a proxy for molten borosilicate glass[J]. Annals of Nuclear Energy, 2019, 125: 38-49.
[17] [17] HRMA P, FERKL P, POKORNY R, et al. Glass production rate in an electric melter: melting rate correlation and primary foam stability[J]. Materials Letters, 2024, 369: 136689.
[18] [18] GUILLEN D P, ABBOUD A W. Heat transfer enhancement due to cold cap motion from bubbling in a waste glass melter[J]. Journal of Energy Resources Technology, 2024, 146(1): 011501.
[19] [19] FERKL P, HRMA P, ABBOUD A, et al. Conversion degree and heat transfer in the cold cap and their effect on glass production rate in an electric melter[J]. International Journal of Applied Glass Science, 2023, 14(2): 318-329.
[20] [20] GUILLEN D P. Bubbling behavior in a waste glass melter[C]//WIT Transactions on Engineering Sciences. Ancona: WIT Press, 2016: 75-85.
[21] [21] ABBOUD A W, GUILLEN D P, HRMA P, et al. Heat transfer from glass melt to cold cap: computational fluid dynamics study of cavities beneath cold cap[J]. International Journal of Applied Glass Science, 2021, 12(2): 233-244.
[22] [22] POKORNY R, KRUGER A A, HRMA P. Mathematical modeling of cold cap: effect of bubbling on melting rate[J]. Ceram Silik, 2014, 58(4): 296-302.
[23] [23] POKORNY R, HILLIARD Z J, DIXON D R, et al. One-dimensional cold cap model for melters with bubblers[J]. Journal of the American Ceramic Society, 2015, 98(10): 3112-3118.
[24] [24] LEE S, FERKL P, POKORNY R, et al. Simplified melting rate correlation for radioactive waste vitrification in electric furnaces[J]. Journal of the American Ceramic Society, 2020, 103(10): 5573-5578.
[25] [25] HWANG S, HWANG Y H, KIM C W. Study on bubbler position optimization of cold crucible induction melter[C]//Proceedings of the Korean Radioactive Waste Society Conference, 2017: 203-204.
[26] [26] ABASHAR M E E. Implementation of mathematical and computer modelling to investigate the characteristics of isothermal ammonia fluidized bed catalytic reactors[J]. Mathematical and Computer Modelling, 2003, 37(3/4): 439-456.
[28] [28] LEE S, CUTFORTH D A, MAR D, et al. Melting rate correlation with batch properties and melter operating conditions during conversion of nuclear waste melter feeds to glasses[J]. International Journal of Applied Glass Science, 2021, 12(3): 398-414.
Get Citation
Copy Citation Text
XU Hongmei, QU Xiaorui, LI Lifeng, ZHAO Qingbin, NIU Chenchen, XU Kai. Simulation on Effect of Bubbling on Melting Performance of Ceramic Melter for High-Level Liquid Waste Vitrification[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(6): 2306
Category:
Received: Feb. 5, 2024
Accepted: Jul. 30, 2025
Published Online: Jul. 30, 2025
The Author Email: XU Kai (kaixu@whut.edu.com)