Laser & Optoelectronics Progress, Volume. 55, Issue 9, 90005(2018)
Fluorescence Suppression Methods in Raman Spectroscopy Detection and Their Application Analysis
[1] [1] Yang Y M. A review of Raman spectroscopy′s application[J]. Public Communication of Science & Technology, 2010, 2(20): 134-143.
[2] [2] Yu X C, Guan L, Ye F, et al. The cause and treatment method for Raman spectroscopy fluorescence interference of fuel[J]. Journal of Logistical Engineering University, 2017, 33(1): 28-37.
[3] [3] Li F. Research on key technologies of inhibiting fluorescence by shifted excitation Raman difference spectroscopy[D]. Xiamen: Xiamen University, 2014.
[4] [4] Sánchez-Pastor N, Pinto A J, Astilleros J M, et al. Raman spectroscopic characterization of a synthetic, non-stoichiometric Cu-Ba uranyl phosphate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 113: 196-202.
[5] [5] Lin L, Wang D, Ye J L, et al. Oxadiazole-based selective chemosensor for copper (II) based on fluorescence quenching[J]. Synthetic Metals, 2016, 221: 220-226.
[6] [6] Zheng C, Wang H, Xu W, et al. Study on the interaction between histidine-capped Au nanoclusters and bovine serum albumin with spectroscopic techniques[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 118: 897-902.
[7] [7] Yang Q Q, Liang J G, Han H Y. Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques[J]. The Journal of Physical Chemistry B, 2009, 113(30): 10454-10458.
[8] [8] Amjadi M, Farzampour L. Fluorescence quenching of fluoroquinolones by gold nanoparticles with different sizes and its analytical application[J]. Journal of Luminescence, 2014, 145: 263-268.
[9] [9] Tatarkovicˇ M, Synytsya A, t′ovícˇková L, et al. The minimizing of fluorescence background in Raman optical activity and Raman spectra of human blood plasma[J]. Analytical and Bioanalytical Chemistry, 2014, 407(5): 1335-1342.
[10] [10] Chmyrov A, Sandén T, Widengren J. Iodide as a fluorescence quencher and promoter: mechanisms and possible implications[J]. Journal of Physical Chemistry B, 2010, 114(34): 11282-11291.
[11] [11] Ly N H, Nguyen T D, Bui T L, et al. Spectroscopic measurements of interactions between hydrophobic 1-pyrenebutyric acid and silver colloidal nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518: 295-303.
[12] [12] Xu H, Pan Z R. Syntheses, crystal structures and exceptionally selective detection of picric acid of two luminescent d10metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(1): 55-62.
[13] [13] Schmid T, Jungnickel R, Neuhaus B, et al. Raman spectroscopy as a tool for the collection management of microscope slides[J]. Zoologischer Anzeiger, 2016, 265: 178-190.
[14] [14] Pathem B K, Zheng Y B, Morton S, et al. Photoreaction of matrix-isolated dihydroazulene-eunctionalized molecules on Au{111}[J]. Nano Letters, 2013, 13(2): 337-343.
[15] [15] Lara-Avila S, Danilov A V, Kubatkin S E, et al. Light-triggered conductance switching in single-molecule Dihydroazulene/Vinylheptafulvene junctions[J]. The Journal of Physical Chemistry C, 2011, 115(37): 18372-18377.
[16] [16] Ziba-Palus J, Michalska A. Photobleaching as a useful technique in reducing of fluorescence in Raman spectra of blue automobile paint samples[J]. Vibrational Spectroscopy, 2014, 74(5): 6-12.
[17] [17] Wang Y, Zhang X T, Wu N. Raman analysis of the painted sculptures pigments of Wuhou Temple in Chengdu[J]. The Journal of Light Scattering, 2015, 27(4): 355-358.
[18] [18] Stowe A C, Smyrl N. Raman spectroscopy of lithium hydride corrosion: selection of appropriate excitation wavelength to minimize fluorescence[J]. Vibrational Spectroscopy, 2012, 60(5): 133-136.
[19] [19] Golcuk K, Mandair G S, Callender A F, et al. Is photobleaching necessary for Raman imaging of bone tissue using a green laser [J]. Biochimica et Biophysica Acta-Biomembranes, 2006, 1758(7): 868-873.
[20] [20] Wang M, Qian R, Bao M, et al. Raman, FT-IR and XRD study of bovine bone mineral and carbonatedapatites with different carbonate levels[J]. Materials Letters, 2018, 210: 203-206.
[21] [21] Kauffman J F, Dellibovi M, Cunningham C R. Raman spectroscopy of coated pharmaceutical tablets and physical models for multivariate calibration to tablet coating thickness[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43(1): 39-48.
[22] [22] Darvin M E, Brandt N N, Lademann J. Photobleaching as a method of increasing the accuracy in measuring carotenoid concentration in human skin by Raman spectroscopy[J]. Optics and Spectroscopy, 2010, 109(2): 205-210.
[23] [23] Wang H Q, Zhao J H, Lee A M D, et al. Improving skin Raman spectral quality by fluorescence photobleaching[J]. Photodiagnosisand Photodynamic Therapy, 2012, 9(4): 299-302.
[24] [24] Bonnier F, Ali S M, Knief P, et al. Analysis of human skin tissue by Raman microspectroscopy: dealing with the background[J]. Vibrational Spectroscopy, 2012, 61(7): 124-132.
[25] [25] Bulánek R, Cˇicˇmanec P, Setnicˇka M. Possibility of VOx/SiO2, complexes speciation: comparativemulti-wavelength Raman and DR UV-vis study[J]. Physics Procedia, 2013, 44: 195-205.
[26] [26] Ciofini D, Oujja M, Caamares M V, et al. Spectroscopic assessment of the UV laser removal of varnishes from painted surfaces[J]. Microchemical Journal, 2016, 124: 792-803.
[27] [27] Windisch C F Jr, Pierce E M, Burton S D, et al. Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses[J]. Journal of Non-Crystalline Solids, 2011, 357(10): 2170-2177.
[28] [28] Parkinson B G, Holland D, Smith M E, et al. Quantitative measurement of Q3 species in silicate andborosilicate glasses using Raman spectroscopy[J]. Journal of Non-Crystalline Solids, 2008, 354(17): 1936-1942.
[29] [29] Hopkins A J, Cooper J L, Profeta L T M, et al. Portable deep-ultraviolet (DUV) Raman for standoff detection[J]. Applied Spectroscopy, 2016, 70(5): 861-873.
[30] [30] Wang J F, Yu J, Sun X L, et al. Rapid analysis of common illicit drugs and the added ingredients by Raman spectroscopy[J]. The Journal of Light Scattering, 2012, 24(3): 312-315.
[31] [31] Gaft M, Nagli L. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11): 1739-1746.
[32] [32] Emmons E D, Tripathi A, Guicheteau J A, et al. Ultraviolet resonance Raman spectroscopy of explosives in solution and the solid state[J]. The Journal of Physical Chemistry A, 2013, 117(20): 4158-4166.
[33] [33] Geiman I, Leona M, Lombardi J R. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks[J]. Journal of Forensic Sciences, 2009, 54(4): 947-952.
[34] [34] Braz A, López-López M, García-Ruiz C. Raman spectroscopy for forensic analysis of inks in questioned documents[J]. Forensic Science International, 2013, 232(1/2/3): 206-212.
[35] [35] Vítek P, Ali E M A, Edwards H G M, et al. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 86(3): 320-327.
[36] [36] Gardner P, Bertino M F, Weimer R, et al. Analysis of lipsticks using Raman spectroscopy[J]. Forensic Science International, 2013, 232(1/2/3): 67-72.
[37] [37] Salahioglu F, Went M J. Differentiation of lipsticks by Raman spectroscopy[J]. Forensic Science International, 2012, 223(1/2/3): 148-152.
[38] [38] Pence I, Mahadevan-Jansen A. Clinical instrumentation and applications of Raman spectroscopy[J]. Chemical Society Reviews, 2016, 45(7): 1958-1979.
[39] [39] Rizkalla M, Ghane P, Agarwal M, et al. Raman spectroscopy for human cancer tissue diagnosis: a pattern recognition approach[J]. Journal of Biomedical Science and Engineering, 2012, 5(12): 892-900.
[40] [40] Mao X T. Application of spectral analysis technology in the food and medicine testing[D]. Hangzhou: China Jiliang University, 2016.
[41] [41] Zheng J W, Yang T W. Classification method of biological tissues based on Raman spectrum features[J]. Laser & Optoelectronics Progress, 2017, 54(5): 053001.
[42] [42] He X L, Wang J F, Liu W H, et al. Discrimination and classification the plastic steel window based on Raman spectroscopy and cluster analysis[J]. Chemical Research and Application, 2017, 29(9): 1387-1392.
[43] [43] Zou W L, Cai Z, Wu J. Fluorescence rejection by shifted excitation Raman difference spectroscopy[J]. Proceedings of the SPIE, 2010, 7855: 78551M.
[44] [44] da Silva Martins M A, Ribeiro D G, dos Santos P E A, et al. Shifted-excitation Raman difference spectroscopy for in vitro and in vivo biological samples analysis[J]. Biomedical Optics Express, 2010, 1(2): 617-626.
[45] [45] Maiwald M, Eppich B, Fricke J, et al. Dual-wavelength Y-branch distributed bragg reflector diode laser at 785 nanometers for shifted excitation Raman difference spectroscopy[J]. Applied Spectroscopy, 2014, 68(8): 838-843.
[46] [46] Maiwald M, Müller A, Sumpf B, et al. Capability of shifted excitation Raman difference spectroscopy under ambient daylight[J]. Applied Optics, 2015, 54(17): 5520-5524.
[47] [47] Zhou H W. Study of fluorescence rejection method in portable Raman spectroscopy[D]. Suzhou: Soochow University, 2013.
[48] [48] Kunov-Kruse A J, Kristensen S B, Liu C, et al. Experimental and ab initio DFT calculated Raman spectrum of Sudan I, a red dye[J]. Journal of Raman Spectroscopy, 2011, 42(6): 1470-1478.
[49] [49] Bttger U, Maiwald M, Hanke F, et al. Shifted excitation Raman difference spectroscopy applied to extraterrestrial particles returned from the asteroid Itokawa[J]. Planetary and Space Science, 2017, 144: 106-111.
[50] [50] Bokobza L, Bruneel J L, Couzi M. Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites[J]. Journal of Carbon Research, 2015, 1(1): 77-94.
[51] [51] Ossig R, Kwon Y H, Hubenthal F, et al. Naturally grown Ag nanoparticles on quartz substrates as SERS substrate excited by a 488 nm diode laser system for SERDS[J]. Applied Physics B, 2012, 106(4): 835-839.
[52] [52] Wang X, Wu J L, Fan X G, et al. Design of Raman spectroscopy measurement system based on shifted excitation method using two laser diodes with different wavelengths[J]. Infrared and Laser Engineering, 2016, 45(1): 52-57.
[53] [53] Lou X T, Xu L J. Measuring characteristic Raman peaksof highly fluorescent materials using an externalcavity diode laser[J]. Physics Experimentation, 2017, 37(2): 10-12.
[54] [54] Wang J G, Cheng M X, Lin J G, et al. Application of wavelet transform modulus maximum for Raman spectra de-noising[J]. Control and Instruments in Chemical Industry, 2010, 37(8): 37-41.
[55] [55] Tan H W, Brown S D. Wavelet analysis applied to removing non-constant, varying spectroscopic background in multivariate calibration[J]. Journal of Chemometrics, 2002, 16(5): 228-240.
[56] [56] Ramos P M, Ruisánchez I. Noise and background removal in Raman spectra of ancient pigments using wavelet transform[J]. Journal of Raman Spectroscopy, 2005, 36(9): 848-856.
[57] [57] Hu Y G, Jiang T, Shen A, et al. A background elimination method based on wavelet transform for Raman spectra[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1): 94-101.
[58] [58] Li J, Choo-Smith L P, Tang Z L, et al. Background removal from polarized Raman spectra of tooth enamel using the wavelet transform[J]. Journal of Raman Spectroscopy, 2010, 42(4): 580-585.
[59] [59] Kandjani A E, Griffin M J, Ramanathan R, et al. A new paradigm for signal processing of Raman spectra using a smoothing free algorithm: coupling continuous wavelet transform with signal removal method[J]. Journal of Raman Spectroscopy, 2013, 44(4): 608-621.
[60] [60] Chen S. Raman spectroscopy fluorescence background correction and its application[D]. Changsha: Central South University, 2011.
[62] [62] Zhang Z M, Chen S, LiangY Z, et al. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2009, 41(6): 659-669.
[63] [63] Cao L Y, Cheng M X, Yu Z W, et al. On-line Raman spectrometer in aromatics complex unit and fluorescence background processing[J]. Control and Instruments in Chemical Industry, 2011, 38(10): 1191-1194.
[64] [64] Zhang Y C, Sun L J, Ren X Y, et al. Baseline correction algorithms of ethanol Raman spectra[J]. Spectroscopy and Spectral Analysis. 2016, 36(s1): 331-332.
[66] [66] Jiang J F, Wu H, Liu K, et al. Wavelength tuning of Stokes optical pulse with high speed and wide range for coherent anti-Stokes Raman scattering excitation source[J]. Chinese Journal of Lasers, 2017, 44(1): 0101002.
[67] [67] Chen L Q. The surface enhanced Raman scattering and fluorescence decay rate from bimetallic core-shell nanoparticles[D]. Suzhou: Soochow University, 2012.
[69] [69] Dai Y, Dong Z R, Liu M H, et al. A dual-axis confocal Raman detection method for suppressing fluorescence from containers[J]. Chinese Journal of Lasers, 2018, 45(7): 0711001.
Get Citation
Copy Citation Text
Zhu Leilei, Feng Aiming, Jin Shangzhong, Xu Bingbing, Liu Kaiyuan, Wang Jie. Fluorescence Suppression Methods in Raman Spectroscopy Detection and Their Application Analysis[J]. Laser & Optoelectronics Progress, 2018, 55(9): 90005
Category: Reviews
Received: Jan. 22, 2018
Accepted: --
Published Online: Sep. 8, 2018
The Author Email: