Laser & Optoelectronics Progress, Volume. 55, Issue 9, 90005(2018)

Fluorescence Suppression Methods in Raman Spectroscopy Detection and Their Application Analysis

Zhu Leilei, Feng Aiming, Jin Shangzhong, Xu Bingbing, Liu Kaiyuan, and Wang Jie
Author Affiliations
  • [in Chinese]
  • show less
    References(69)

    [1] [1] Yang Y M. A review of Raman spectroscopy′s application[J]. Public Communication of Science & Technology, 2010, 2(20): 134-143.

    [2] [2] Yu X C, Guan L, Ye F, et al. The cause and treatment method for Raman spectroscopy fluorescence interference of fuel[J]. Journal of Logistical Engineering University, 2017, 33(1): 28-37.

    [3] [3] Li F. Research on key technologies of inhibiting fluorescence by shifted excitation Raman difference spectroscopy[D]. Xiamen: Xiamen University, 2014.

    [4] [4] Sánchez-Pastor N, Pinto A J, Astilleros J M, et al. Raman spectroscopic characterization of a synthetic, non-stoichiometric Cu-Ba uranyl phosphate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 113: 196-202.

    [5] [5] Lin L, Wang D, Ye J L, et al. Oxadiazole-based selective chemosensor for copper (II) based on fluorescence quenching[J]. Synthetic Metals, 2016, 221: 220-226.

    [6] [6] Zheng C, Wang H, Xu W, et al. Study on the interaction between histidine-capped Au nanoclusters and bovine serum albumin with spectroscopic techniques[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 118: 897-902.

    [7] [7] Yang Q Q, Liang J G, Han H Y. Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques[J]. The Journal of Physical Chemistry B, 2009, 113(30): 10454-10458.

    [8] [8] Amjadi M, Farzampour L. Fluorescence quenching of fluoroquinolones by gold nanoparticles with different sizes and its analytical application[J]. Journal of Luminescence, 2014, 145: 263-268.

    [9] [9] Tatarkovicˇ M, Synytsya A, t′ovícˇková L, et al. The minimizing of fluorescence background in Raman optical activity and Raman spectra of human blood plasma[J]. Analytical and Bioanalytical Chemistry, 2014, 407(5): 1335-1342.

    [10] [10] Chmyrov A, Sandén T, Widengren J. Iodide as a fluorescence quencher and promoter: mechanisms and possible implications[J]. Journal of Physical Chemistry B, 2010, 114(34): 11282-11291.

    [11] [11] Ly N H, Nguyen T D, Bui T L, et al. Spectroscopic measurements of interactions between hydrophobic 1-pyrenebutyric acid and silver colloidal nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518: 295-303.

    [12] [12] Xu H, Pan Z R. Syntheses, crystal structures and exceptionally selective detection of picric acid of two luminescent d10metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(1): 55-62.

    [13] [13] Schmid T, Jungnickel R, Neuhaus B, et al. Raman spectroscopy as a tool for the collection management of microscope slides[J]. Zoologischer Anzeiger, 2016, 265: 178-190.

    [14] [14] Pathem B K, Zheng Y B, Morton S, et al. Photoreaction of matrix-isolated dihydroazulene-eunctionalized molecules on Au{111}[J]. Nano Letters, 2013, 13(2): 337-343.

    [15] [15] Lara-Avila S, Danilov A V, Kubatkin S E, et al. Light-triggered conductance switching in single-molecule Dihydroazulene/Vinylheptafulvene junctions[J]. The Journal of Physical Chemistry C, 2011, 115(37): 18372-18377.

    [16] [16] Ziba-Palus J, Michalska A. Photobleaching as a useful technique in reducing of fluorescence in Raman spectra of blue automobile paint samples[J]. Vibrational Spectroscopy, 2014, 74(5): 6-12.

    [17] [17] Wang Y, Zhang X T, Wu N. Raman analysis of the painted sculptures pigments of Wuhou Temple in Chengdu[J]. The Journal of Light Scattering, 2015, 27(4): 355-358.

    [18] [18] Stowe A C, Smyrl N. Raman spectroscopy of lithium hydride corrosion: selection of appropriate excitation wavelength to minimize fluorescence[J]. Vibrational Spectroscopy, 2012, 60(5): 133-136.

    [19] [19] Golcuk K, Mandair G S, Callender A F, et al. Is photobleaching necessary for Raman imaging of bone tissue using a green laser [J]. Biochimica et Biophysica Acta-Biomembranes, 2006, 1758(7): 868-873.

    [20] [20] Wang M, Qian R, Bao M, et al. Raman, FT-IR and XRD study of bovine bone mineral and carbonatedapatites with different carbonate levels[J]. Materials Letters, 2018, 210: 203-206.

    [21] [21] Kauffman J F, Dellibovi M, Cunningham C R. Raman spectroscopy of coated pharmaceutical tablets and physical models for multivariate calibration to tablet coating thickness[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43(1): 39-48.

    [22] [22] Darvin M E, Brandt N N, Lademann J. Photobleaching as a method of increasing the accuracy in measuring carotenoid concentration in human skin by Raman spectroscopy[J]. Optics and Spectroscopy, 2010, 109(2): 205-210.

    [23] [23] Wang H Q, Zhao J H, Lee A M D, et al. Improving skin Raman spectral quality by fluorescence photobleaching[J]. Photodiagnosisand Photodynamic Therapy, 2012, 9(4): 299-302.

    [24] [24] Bonnier F, Ali S M, Knief P, et al. Analysis of human skin tissue by Raman microspectroscopy: dealing with the background[J]. Vibrational Spectroscopy, 2012, 61(7): 124-132.

    [25] [25] Bulánek R, Cˇicˇmanec P, Setnicˇka M. Possibility of VOx/SiO2, complexes speciation: comparativemulti-wavelength Raman and DR UV-vis study[J]. Physics Procedia, 2013, 44: 195-205.

    [26] [26] Ciofini D, Oujja M, Caamares M V, et al. Spectroscopic assessment of the UV laser removal of varnishes from painted surfaces[J]. Microchemical Journal, 2016, 124: 792-803.

    [27] [27] Windisch C F Jr, Pierce E M, Burton S D, et al. Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses[J]. Journal of Non-Crystalline Solids, 2011, 357(10): 2170-2177.

    [28] [28] Parkinson B G, Holland D, Smith M E, et al. Quantitative measurement of Q3 species in silicate andborosilicate glasses using Raman spectroscopy[J]. Journal of Non-Crystalline Solids, 2008, 354(17): 1936-1942.

    [29] [29] Hopkins A J, Cooper J L, Profeta L T M, et al. Portable deep-ultraviolet (DUV) Raman for standoff detection[J]. Applied Spectroscopy, 2016, 70(5): 861-873.

    [30] [30] Wang J F, Yu J, Sun X L, et al. Rapid analysis of common illicit drugs and the added ingredients by Raman spectroscopy[J]. The Journal of Light Scattering, 2012, 24(3): 312-315.

    [31] [31] Gaft M, Nagli L. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11): 1739-1746.

    [32] [32] Emmons E D, Tripathi A, Guicheteau J A, et al. Ultraviolet resonance Raman spectroscopy of explosives in solution and the solid state[J]. The Journal of Physical Chemistry A, 2013, 117(20): 4158-4166.

    [33] [33] Geiman I, Leona M, Lombardi J R. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks[J]. Journal of Forensic Sciences, 2009, 54(4): 947-952.

    [34] [34] Braz A, López-López M, García-Ruiz C. Raman spectroscopy for forensic analysis of inks in questioned documents[J]. Forensic Science International, 2013, 232(1/2/3): 206-212.

    [35] [35] Vítek P, Ali E M A, Edwards H G M, et al. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 86(3): 320-327.

    [36] [36] Gardner P, Bertino M F, Weimer R, et al. Analysis of lipsticks using Raman spectroscopy[J]. Forensic Science International, 2013, 232(1/2/3): 67-72.

    [37] [37] Salahioglu F, Went M J. Differentiation of lipsticks by Raman spectroscopy[J]. Forensic Science International, 2012, 223(1/2/3): 148-152.

    [38] [38] Pence I, Mahadevan-Jansen A. Clinical instrumentation and applications of Raman spectroscopy[J]. Chemical Society Reviews, 2016, 45(7): 1958-1979.

    [39] [39] Rizkalla M, Ghane P, Agarwal M, et al. Raman spectroscopy for human cancer tissue diagnosis: a pattern recognition approach[J]. Journal of Biomedical Science and Engineering, 2012, 5(12): 892-900.

    [40] [40] Mao X T. Application of spectral analysis technology in the food and medicine testing[D]. Hangzhou: China Jiliang University, 2016.

    [41] [41] Zheng J W, Yang T W. Classification method of biological tissues based on Raman spectrum features[J]. Laser & Optoelectronics Progress, 2017, 54(5): 053001.

    [42] [42] He X L, Wang J F, Liu W H, et al. Discrimination and classification the plastic steel window based on Raman spectroscopy and cluster analysis[J]. Chemical Research and Application, 2017, 29(9): 1387-1392.

    [43] [43] Zou W L, Cai Z, Wu J. Fluorescence rejection by shifted excitation Raman difference spectroscopy[J]. Proceedings of the SPIE, 2010, 7855: 78551M.

    [44] [44] da Silva Martins M A, Ribeiro D G, dos Santos P E A, et al. Shifted-excitation Raman difference spectroscopy for in vitro and in vivo biological samples analysis[J]. Biomedical Optics Express, 2010, 1(2): 617-626.

    [45] [45] Maiwald M, Eppich B, Fricke J, et al. Dual-wavelength Y-branch distributed bragg reflector diode laser at 785 nanometers for shifted excitation Raman difference spectroscopy[J]. Applied Spectroscopy, 2014, 68(8): 838-843.

    [46] [46] Maiwald M, Müller A, Sumpf B, et al. Capability of shifted excitation Raman difference spectroscopy under ambient daylight[J]. Applied Optics, 2015, 54(17): 5520-5524.

    [47] [47] Zhou H W. Study of fluorescence rejection method in portable Raman spectroscopy[D]. Suzhou: Soochow University, 2013.

    [48] [48] Kunov-Kruse A J, Kristensen S B, Liu C, et al. Experimental and ab initio DFT calculated Raman spectrum of Sudan I, a red dye[J]. Journal of Raman Spectroscopy, 2011, 42(6): 1470-1478.

    [49] [49] Bttger U, Maiwald M, Hanke F, et al. Shifted excitation Raman difference spectroscopy applied to extraterrestrial particles returned from the asteroid Itokawa[J]. Planetary and Space Science, 2017, 144: 106-111.

    [50] [50] Bokobza L, Bruneel J L, Couzi M. Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites[J]. Journal of Carbon Research, 2015, 1(1): 77-94.

    [51] [51] Ossig R, Kwon Y H, Hubenthal F, et al. Naturally grown Ag nanoparticles on quartz substrates as SERS substrate excited by a 488 nm diode laser system for SERDS[J]. Applied Physics B, 2012, 106(4): 835-839.

    [52] [52] Wang X, Wu J L, Fan X G, et al. Design of Raman spectroscopy measurement system based on shifted excitation method using two laser diodes with different wavelengths[J]. Infrared and Laser Engineering, 2016, 45(1): 52-57.

    [53] [53] Lou X T, Xu L J. Measuring characteristic Raman peaksof highly fluorescent materials using an externalcavity diode laser[J]. Physics Experimentation, 2017, 37(2): 10-12.

    [54] [54] Wang J G, Cheng M X, Lin J G, et al. Application of wavelet transform modulus maximum for Raman spectra de-noising[J]. Control and Instruments in Chemical Industry, 2010, 37(8): 37-41.

    [55] [55] Tan H W, Brown S D. Wavelet analysis applied to removing non-constant, varying spectroscopic background in multivariate calibration[J]. Journal of Chemometrics, 2002, 16(5): 228-240.

    [56] [56] Ramos P M, Ruisánchez I. Noise and background removal in Raman spectra of ancient pigments using wavelet transform[J]. Journal of Raman Spectroscopy, 2005, 36(9): 848-856.

    [57] [57] Hu Y G, Jiang T, Shen A, et al. A background elimination method based on wavelet transform for Raman spectra[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1): 94-101.

    [58] [58] Li J, Choo-Smith L P, Tang Z L, et al. Background removal from polarized Raman spectra of tooth enamel using the wavelet transform[J]. Journal of Raman Spectroscopy, 2010, 42(4): 580-585.

    [59] [59] Kandjani A E, Griffin M J, Ramanathan R, et al. A new paradigm for signal processing of Raman spectra using a smoothing free algorithm: coupling continuous wavelet transform with signal removal method[J]. Journal of Raman Spectroscopy, 2013, 44(4): 608-621.

    [60] [60] Chen S. Raman spectroscopy fluorescence background correction and its application[D]. Changsha: Central South University, 2011.

    [62] [62] Zhang Z M, Chen S, LiangY Z, et al. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2009, 41(6): 659-669.

    [63] [63] Cao L Y, Cheng M X, Yu Z W, et al. On-line Raman spectrometer in aromatics complex unit and fluorescence background processing[J]. Control and Instruments in Chemical Industry, 2011, 38(10): 1191-1194.

    [64] [64] Zhang Y C, Sun L J, Ren X Y, et al. Baseline correction algorithms of ethanol Raman spectra[J]. Spectroscopy and Spectral Analysis. 2016, 36(s1): 331-332.

    [66] [66] Jiang J F, Wu H, Liu K, et al. Wavelength tuning of Stokes optical pulse with high speed and wide range for coherent anti-Stokes Raman scattering excitation source[J]. Chinese Journal of Lasers, 2017, 44(1): 0101002.

    [67] [67] Chen L Q. The surface enhanced Raman scattering and fluorescence decay rate from bimetallic core-shell nanoparticles[D]. Suzhou: Soochow University, 2012.

    [69] [69] Dai Y, Dong Z R, Liu M H, et al. A dual-axis confocal Raman detection method for suppressing fluorescence from containers[J]. Chinese Journal of Lasers, 2018, 45(7): 0711001.

    Tools

    Get Citation

    Copy Citation Text

    Zhu Leilei, Feng Aiming, Jin Shangzhong, Xu Bingbing, Liu Kaiyuan, Wang Jie. Fluorescence Suppression Methods in Raman Spectroscopy Detection and Their Application Analysis[J]. Laser & Optoelectronics Progress, 2018, 55(9): 90005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 22, 2018

    Accepted: --

    Published Online: Sep. 8, 2018

    The Author Email:

    DOI:10.3788/lop55.090005

    Topics