Laser & Optoelectronics Progress, Volume. 56, Issue 16, 161001(2019)

Hyperspectral Image Unmixing Based on Constrained Nonnegative Matrix Factorization

Shuai Fang1、**, Jinming Wang1、*, and Fengyun Cao2,3
Author Affiliations
  • 1 Department of Artificial Intelligence and Data Mining, School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
  • 2 Anhui Provincial Key Laboratory of Industry Safety and Emergency Technology, Hefei University of Technology, Hefei, Anhui 230601, China
  • 3 School of Computer Science and Technology, Hefei Normal University, Hefei, Anhui 230601, China
  • show less
    Figures & Tables(14)
    Procedure of SSPP-CNMF algorithm
    Hyperspectral images. (a) Fractal1; (b) Jasper; (c) Cuprite
    Jasper ground truths (GT) and endmember results obtained by proposed algorithm. (a) Tree; (b) soil; (c) water; (d) road
    Ground truths of Jasper abundance. (a) Water; (b) soil; (c) road; (d) tree
    Jasper abundances estimated by VCA algorithm. (a) Water; (b) soil; (c) road; (d) tree
    Jasper abundances estimated by CoNMF algorithm. (a) Water; (b) soil; (c) road; (d) tree
    Jasper abundances estimated by MVC-NMF algorithm. (a) Water; (b) soil; (c) road; (d) tree
    Jasper abundances estimated by SSPP-VCA algorithm. (a) Water; (b) soil; (c) road; (d) tree
    Jasper abundances estimated by SSPP-CNMF algorithm. (a) Water; (b) soil; (c) road; (d) tree
    Fractal1 abundances estimated by SSPP-CNMF algorithm. (a) Halloysite; (b) Nontronite; (c) Kaolinite CM9; (d) Sphene; (e) Muscovite; (f) Kaolinite KGa1; (g) Dumortierite; (h) Pyrophyllite; (i) Alunite
    Fractal1 ground truth and endmember spectra estimated by SSPP-CNMF algorithm. (a) Dumortierite; (b) Halloysite; (c) Kaolinite CM9; (d) Kaolinite KGa1; (e) Muscovite; (f) Nontronite; (g) Pyrophyllite; (h) Sphene
    Cuprite abundances estimated by SSPP-CNMF algorithm. (a) Endmember 1;(b) Endmember 2; (c) Endmember 3; (d) Endmember 4; (e) Endmember 5; (f) Endmember 6; (g) Endmember 7; (h) Endmember 8; (i) Endmember 9; (j) Endmember 10; (k) Endmember 11; (l) Endmember 12
    • Table 1. Comparison of SAD of different hyperspectral unmixing algorithms

      View table

      Table 1. Comparison of SAD of different hyperspectral unmixing algorithms

      Hyperspectral datasetsSNR /dBSAD /10-2
      VCAMVSAMVC-NMFCoNMFSSPP-VCAOurs
      Fractal13020.3222.4617.519.6811.379.31
      Jasper41.6328.4224.4229.4312.8212.71
      Cuprite25.0812.4220.2219.7113.3213.22
    • Table 2. Comparison of RMSE of different hyperspectral unmixing algorithms

      View table

      Table 2. Comparison of RMSE of different hyperspectral unmixing algorithms

      Hyperspectral datasetsSNR /dBRMSE /10-2
      VCAMVSAMVC-NMFCoNMFSSPP-VCAOurs
      Fractal13024.1922.7115.3710.6813.4410.52
      Jasper36.6138.8119.7526.7219.3918.78
      Cuprite
    Tools

    Get Citation

    Copy Citation Text

    Shuai Fang, Jinming Wang, Fengyun Cao. Hyperspectral Image Unmixing Based on Constrained Nonnegative Matrix Factorization[J]. Laser & Optoelectronics Progress, 2019, 56(16): 161001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 2, 2019

    Accepted: Mar. 12, 2019

    Published Online: Aug. 5, 2019

    The Author Email: Shuai Fang (fangshuai@hfut.edu.cn), Jinming Wang (lnutwjm@mail.hfut.edu.cn)

    DOI:10.3788/LOP56.161001

    Topics