Remote Sensing Technology and Application, Volume. 39, Issue 1, 222(2024)
Research on Extracting Special Plant Planting Plots from High-resolution Remote Sensing Images Using I-PSPNet Semantic Segmentation Model
[1] L BENNINGTON ALLISON. Application of multi-spectral remote sensing for crop discrimination in Afghanistan(2008).
[2] S CHUINSIRI, F BLASCO, M F BELLAN et al. A poppy survey using high resolution remote sensing data. International Journal of Remote Sensing, 18, 393-407(1997).
[3] Y C TIAN, B F WU, L ZHANG et al. Opium poppy monitoring with remote sensing in North Myanmar. International Journal of Drug Policy, 22, 278-284(2011).
[4] K JIA, B F WU, Y C TIAN et al. Spectral discrimination of opium poppy using field spectrometry. IEEE Transactions on Geoscience and Remote Sensing, 49, 3414-3422(2011).
[5] J J WANG, Y ZHANG, C BUSSINK. Unsupervised multiple endmember spectral mixture analysis-based detection of opium poppy fields from an EO-1 Hyperion image in Helmand, Afghanistan. Science of the Total Environment, 476/477, 1-6(2014).
[6] J J WANG, G S ZHOU, Y ZHANG et al. An unsupervised mixture-tuned matched filtering-based method for the remote sensing of opium poppy fields using EO-1 Hyperion data: An example from Helmand, Afghanistan. Remote Sensing Letters, 7, 945-954(2016).
[7] D M SIMMS, T W WAINE, J C TAYLOR et al. Image segmentation for improved consistency in image-interpretation of opium poppy. International Journal of Remote Sensing, 37, 1243-1256(2016).
[8] D M SIMMS, T W WAINE, J C TAYLOR. Improved estimates of opium cultivation in Afghanistan using imagery-based stratification. International Journal of Remote Sensing, 38, 3785-3799(2017).
[9] S DEMIR, L BAŞAYIĞIT. Determination of opium poppy (papaver somniferum) parcels using high-resolution satellite imagery. Journal of the Indian Society of Remote Sensing, 47, 977-987(2019).
[10] Q HE, Y ZHANG, L LIANG. Identification of poppy by spectral matching classification. Optik, 200, 163445(2020).
[11] Q HE, Y ZHANG, L LIANG. Application of linear spectral mixed pixel decomposition technology in extracting the spatial distribution of illicit opium poppy cultivation. Optik, 271, 170104(2022).
[12] X Y LIU, Y C TIAN, C YUAN et al. Opium poppy detection using deep learning. Remote Sensing, 10, 1886(2018).
[13] J ZHOU, Y C TIAN, C YUAN et al. Improved UAV opium poppy detection using an updated YOLOv3 model. Sensors, 19, 4851(2019).
[14] C S WANG, Q WANG, H R WU et al. Low-altitude remote sensing opium poppy image detection based on modified YOLOv3. Remote Sensing, 13, 2130(2021).
[15] Q WANG, C S WANG, H R WU et al. A two-stage low-altitude remote sensing papaver somniferum image detection system based on YOLOv5s+DenseNet121. Remote Sensing, 14, 1834(2022).
[16] J ZHU, C H ZHANG, C J ZHANG. Papaver somniferum and Papaver rhoeas classification based on visible capsule images using a modified MobileNetV3-small network with transfer learning. Entropy, 25, 447(2023).
[17] Z Q ZHANG, W D XIA, G Q XIE et al. Fast opium poppy detection in Unmanned Aerial Vehicle (UAV) imagery based on deep neural network. Drones, 7, 559(2023).
[18] E SHELHAMER, J LONG, T DARRELL. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).
[19] V BADRINARAYANAN, A KENDALL, R CIPOLLA. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[20] O RONNEBERGER, P FISCHER, T BROX. U-net: Convolutional networks for biomedical image segmentation, 234-241(2015).
[21] L C Chen, G Papandreou, I Kokkinos et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs, -2015(2015).
[22] L C Chen, G Papandreou, F Schroff et al. Rethinking atrous convolution for semantic image segmentation(2017).
[23] L C CHEN, G PAPANDREOU, I KOKKINOS et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).
[24] L C CHEN, Y K ZHU, G PAPANDREOU et al. Encoder-decoder with atrous separable convolution for semantic image segmentation, 833-851(2018).
[25] H S ZHAO, J P SHI, X J QI et al. Pyramid scene parsing network, 6230-6239(2017).
[26] J FU, J LIU, H J TIAN et al. Dual attention network for scene segmentation, 3141-3149(2019).
[28] P Prapinmongkolkarn, C Thisayakorn, N Kattiyakulwanich et al. Remote sensing applications to land cover classification in Northern Thailand [Landsat]. Journal of Biological Chemistry, 270, 10828-10832(1980).
[29] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[30] M SANDLER, A HOWARD, M L ZHU et al. MobileNetV2: Inverted residuals and linear bottlenecks, 4510-4520(2018).
[31] A G HOWARD, M L ZHU, B CHEN et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. ArXiv(2017).
[32] J HU, L SHEN, S ALBANIE et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).
[33] A AHMADIS. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation(2016).
Get Citation
Copy Citation Text
Zhigang LU, Fangmiao CHEN, Chao YUAN, Yichen TIAN, Qiang CHEN, Meiping WEN, Kai YIN, Guang YANG. Research on Extracting Special Plant Planting Plots from High-resolution Remote Sensing Images Using I-PSPNet Semantic Segmentation Model[J]. Remote Sensing Technology and Application, 2024, 39(1): 222
Category: Research Articles
Received: Mar. 26, 2022
Accepted: --
Published Online: Jul. 22, 2024
The Author Email: LU Zhigang (2233758751@qq.com)