Chinese Journal of Lasers, Volume. 50, Issue 23, 2306001(2023)

1000 km Dual‐Mode Transmission with 80 WDM Channels Through Few‐Mode Optical Fiber

Tianqi Zheng1, Chen Wang1, Kaihui Wang1, Junjie Ding1, Bowen Zhu1, Bohan Sang1, Wen Zhou1, Lei Shen2, Lei Zhang2, Ruichun Wang2, Changkun Yan2, and Jianjun Yu1、*
Author Affiliations
  • 1Department of Communication Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 2Yangtze Optical Fibre and Cable Joint Stock Limited Company, Wuhan 430073, Hubei , China
  • show less
    References(24)

    [1] Zhu Z Y, Zhao M X, Zhang Y C et al. MIMO equalization technology based on neural network in high-speed IM-DD mode division multiplexing transmission system[J]. Acta Optica Sinica, 41, 1406003(2021).

    [2] Lei X, Ren F, Zhang Y Y et al. Trench-nanopore assisted double-clad weakly coupled few-mode fiber for mode division multiplexing[J]. Acta Optica Sinica, 41, 2306003(2021).

    [3] Ouyang Y J, Zhang Q W, Huang Y T et al. MIMO pre‑equalization based mode crosstalk mitigation method in mode division multiplexing passive optical network[J]. Chinese Journal of Lasers, 50, 0606002(2023).

    [4] Tang S L, Wu B J, Yan W et al. High speed MIMO-free transmission experiment of mode division multiplexing system with photonic lanterns[J]. Acta Photonica Sinica, 52, 0106001(2023).

    [5] Rademacher G, Ryf R, Fontaine N K et al. 3500-km mode-multiplexed transmission through a three-mode graded-index few-mode fiber link[C](2018).

    [6] Shibahara K, Mizuno T, Doowhan L et al. DMD-unmanaged long-haul SDM transmission over 2500-km 12-core×3-mode MC-FMF and 6300-km 3-mode FMF employing intermodal interference cancelling technique[J]. Journal of Lightwave Technology, 37, 138-147(2018).

    [7] Luís R S, Rademacher G, Puttnam B J et al. 1.2 Pb/s throughput transmission using a 160 μm cladding, 4-core, 3-mode fiber[J]. Journal of Lightwave Technology, 37, 1798-1804(2019).

    [8] Rademacher G, Puttnam B J, Luís R S et al. Multi-span transmission over 65 km 38-core 3-mode fiber[C](2021).

    [9] Chen J, Huang Q Q, Zhang Q W et al. Orthogonal frequency division/mode division multiplexing IM-DD multimode fiber transmission system based on photonic lanterns[J]. Acta Optica Sinica, 38, 0606008(2018).

    [10] van Weerdenburg J, Ryf R, Alvarado-Zacarias J C et al. 138-Tb/s mode- and wavelength-multiplexed transmission over six-mode graded-index fiber[J]. Journal of Lightwave Technology, 36, 1369-1374(2018).

    [11] Wakayama Y, Soma D, Beppu S et al. 266.1-Tbit/s transmission over 90.4-km 6-mode fiber with inline dual C+L-band 6-mode EDFA[J]. Journal of Lightwave Technology, 37, 404-410(2019).

    [12] Soma D, Beppu S, Sumita S et al. 402.7-Tb/s weakly-coupled 10-mode-multiplexed transmission using rate-adaptive PS PDM-16QAM WDM signals[C](2020).

    [13] Shibahara K, Mizuno T, Kawakami H et al. Full C-band 3060-km DMD-unmanaged 3-mode transmission with 40.2-Tb/s capacity using cyclic mode permutation[J]. Journal of Lightwave Technology, 38, 514-521(2020).

    [14] Zou D D, Li F, Wang W et al. Beyond 1.6 Tb/s net rate PAM signal transmission for rack-rack optical interconnects with mode and wavelength division multiplexing[J]. Journal of Lightwave Technology, 39, 340-346(2021).

    [15] Rademacher G, Puttnam B J, Luis R S et al. Ultra-wide band transmission in few-mode fibers[C](2021).

    [16] Rademacher G, Luís R S, Puttnam B J et al. 1.53 peta-bit/s C-band transmission in a 55-mode fiber[C](2022).

    [17] Zhang C, Wang Y H. New dimension in vortex electro-magnetic wave transmission with orbital angular momentum[J]. Journal on Communications, 43, 211-222(2022).

    [18] Ma Z Y, Wu Q Q, Li Q H et al. Ultra-dense wavelength division multiplexing passive optical network[J]. Laser & Optoelectronics Progress, 58, 0500006(2021).

    [19] Liu F N, Weng Y B, Liu Z et al. Research on direct detection fiber transmission system based on hybrid multiplexing of mode division and wavelength division[J]. Optical Communication Technology, 46, 64-69(2022).

    [20] Kong M, Shi J T, Sang B H et al. 800-Gb/s/carrier WDM coherent transmission over 2000 km based on truncated PS-64QAM utilizing MIMO Volterra equalizer[J]. Journal of Lightwave Technology, 40, 2830-2839(2022).

    [21] Yu J J, Chi N, Chen L[M]. Coherent optical communication technology based on digital signal processing(2013).

    [22] Kong M, Li X Y, Zhang J et al. High spectral efficiency 400 Gb/s transmission by different modulation formats and advanced DSP[J]. Journal of Lightwave Technology, 37, 5317-5325(2019).

    [23] Yu J J, Chi N[M]. Optical fiber communication technology based on digital signal processing (Volume 1): single carrier signal transmission(2021).

    [24] Yu J J, Chi N[M]. Optical fiber communication technology based on digital signal processing (Volume 2): new technology of multi-carrier modulation and artificial intelligence(2021).

    Tools

    Get Citation

    Copy Citation Text

    Tianqi Zheng, Chen Wang, Kaihui Wang, Junjie Ding, Bowen Zhu, Bohan Sang, Wen Zhou, Lei Shen, Lei Zhang, Ruichun Wang, Changkun Yan, Jianjun Yu. 1000 km Dual‐Mode Transmission with 80 WDM Channels Through Few‐Mode Optical Fiber[J]. Chinese Journal of Lasers, 2023, 50(23): 2306001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber optics and optical communication

    Received: Feb. 17, 2023

    Accepted: Apr. 6, 2023

    Published Online: Nov. 27, 2023

    The Author Email: Yu Jianjun (jianjun@fudan.edu.cn)

    DOI:10.3788/CJL230564

    Topics