Acta Optica Sinica, Volume. 43, Issue 15, 1500004(2023)

Advances in Multi-Dimensional Modulated Holographic Data Storage

Xiaodi Tan1, Xiao Lin1, Jinliang Zang2, Fenglan Fan3, Jinpeng Liu4, Yuhong Ren1, and Jianying Hao1、*
Author Affiliations
  • 1College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, Fujian, China
  • 2National Institute of Metrology, Beijing 100029, China
  • 3College of Chemistry and Chemical Engineering, Hebei Normal University for Nationalities, Chengde 067000, Hebei, China
  • 4School of Optoelectronic Engineering, Xidian University, Xi'an 710071, Shaanxi, China
  • show less
    References(145)

    [1] van Heerden P J. Theory of optical information storage in solids[J]. Applied Optics, 2, 393-400(1963).

    [2] Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 265, 749-752(1994).

    [3] Mok F H, Tackitt M C, Stoll H M. Storage of 500 high-resolution holograms in a LiNbO3 crystal[J]. Optics Letters, 16, 605-607(1991).

    [4] Bernal M P, Coufal H, Grygier R K et al. A precision tester for studies of holographic optical storage materials and recording physics[J]. Applied Optics, 35, 2360-2374(1996).

    [5] Coufal H J, Psaltis D, Sincerbox G T[M]. Holographic Data Storage(2000).

    [6] Hesselink L, Bashaw M C. Optical memories implemented with photorefractive media[J]. Optical and Quantum Electronics, 25, S611-S661(1993).

    [7] Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage greater than 100 bits/μm2[J]. Proceedings of SPIE, 5216, 10-25(2003).

    [8] Schnoes M, Ihas B, Dhar L et al. Photopolymer use for holographic data storage[J]. Proceedings of SPIE, 4988, 68-76(2003).

    [9] Horimai H, Tan X D, Li J. Collinear holography[J]. Applied Optics, 44, 2575-2579(2005).

    [10] Zhai Q L, Tao S Q, Zhang T et al. Investigation on mechanism of multiple holographic recording with uniform diffraction efficiency in photopolymers[J]. Optics Express, 17, 10871-10880(2009).

    [11] Wei H Y, Cao L C, Xu Z F et al. Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer[J]. Optics Express, 14, 5135-5142(2006).

    [12] Liu J P, Horimai H, Lin X et al. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding[J]. Optics Express, 26, 3828-3838(2018).

    [13] Zang J L, Kang G G, Li P et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography[J]. Optics Letters, 42, 1377-1380(2017).

    [14] Xu K, Huang Y, Lin X et al. Unequally spaced four levels phase encoding in holographic data storage[J]. Optical Review, 23, 1004-1009(2016).

    [15] Wu A A, Kang G G, Zang J L et al. Null reconstruction of orthogonal circular polarization hologram with large recording angle[J]. Optics Express, 23, 8880-8887(2015).

    [16] Wang J, Kang G, Wu A et al. Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram[J]. Optics Express, 24, 1641-1647(2016).

    [17] Hong Y F, Kang G G, Zang J L et al. Investigation of faithful reconstruction in nonparaxial approximation polarization holography[J]. Applied Optics, 56, 10024-10029(2017).

    [18] Zhang Y Y, Kang G G, Zang J L et al. Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle[J]. Optics Letters, 41, 4126-4129(2016).

    [19] Liu Y, Fan F L, Hong Y F et al. Volume holographic recording in irgacure 784-doped PMMA photopolymer[J]. Optics Express, 25, 20654-20662(2017).

    [20] Fan F L, Liu Y, Hong Y F et al. Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-co-BzMA) photopolymer[J]. Chemistry Letters, 47, 520-523(2018).

    [21] Lin X, Hao J Y, Zheng M J et al. Optical holographic data storage: the time for new development[J]. Opto-Electronic Engineering, 46, 180642(2019).

    [22] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [23] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America A, 52, 1123-1130(1962).

    [24] Leith E N, Upatnieks J. Wavefront reconstruction with diffused illumination and three-dimensional objects[J]. Journal of the Optical Society of America A, 54, 1295-1301(1964).

    [25] Ashkin A, Boyd G D, Dziedzic J M et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 9, 72-74(1966).

    [26] Staebler D L, Amodei J J. Coupled-wave analysis of holographic storage in LiNbO3[J]. Journal of Applied Physics, 43, 1042-1049(1972).

    [27] Staebler D L, Burke W J, Phillips W et al. Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3[J]. Applied Physics Letters, 26, 182-184(1975).

    [28] Ishida A, Mikami O, Miyazawa S et al. Rh-doped LiNbO3 as an improved new material for reversible holographic storage[J]. Applied Physics Letters, 21, 192-193(1972).

    [29] Shah P, Rabson T A, Tittel F K et al. Volume holographic recording and storage in Fe-doped LiNbO3 using optical pulses[J]. Applied Physics Letters, 24, 130-131(1974).

    [30] Stewart W C, Mezrich R S, Cosentino L S. An experimental read write holographic memory[J]. Radio Corporation of America Review, 34, 3-44(1973).

    [31] Amodei J J, Staebler D L. Holographic pattern fixing in electro-optic crystals[J]. Applied Physics Letters, 18, 540-542(1971).

    [32] Strehlow W C, Dennison R L, Packard J R. Holographic data store[J]. Journal of the Optical Society of America, 64, 543-544(1974).

    [33] Nishida N, Sakaguchi M, Saito F. Holographic coding plate: a new application of holographic memory[J]. Applied Optics, 12, 1663-1674(1973).

    [34] Kubota K, Ono Y, Kondo M et al. Holographic disk with high data transfer rate: its application to an audio response memory[J]. Applied Optics, 19, 944-951(1980).

    [35] Tsunoda Y, Tatsuno K, Kataoka K et al. Holographic video disk: an alternative approach to optical video disks[J]. Applied Optics, 15, 1398-1403(1976).

    [36] Mok F H. Angle-multiplexed storage of 5000 holograms in lithium niobate[J]. Optics Letters, 18, 915-917(1993).

    [37] Shelby R M, Hoffnagle J A, Burr G W et al. Pixel-matched holographic data storage with megabit pages[J]. Optics Letters, 22, 1509-1511(1997).

    [38] Hong J H, McMichael I C, Chang T Y et al. Volume holographic memory systems: techniques and architectures[J]. Optical Engineering, 34, 2193-2203(1995).

    [39] Curtis K. Digital holographic data storage prototype[C], 164-166(2002).

    [40] Mok F H, Burr G W, Psaltis D. Spatially and angle-multiplexed holographic random access memory[J]. Proceedings of SPIE, 1773, 334-345(1993).

    [41] Rakuljic G A, Leyva V, Yariv A. Optical data storage by using orthogonal wavelength-multiplexed volume holograms[J]. Optics Letters, 17, 1471-1473(1992).

    [42] Psaltis D, Levene M, Pu A et al. Holographic storage using shift multiplexing[J]. Optics Letters, 20, 782-784(1995).

    [43] Steckman G J, Pu A, Psaltis D. Storage density of shift-multiplexed holographic memory[J]. Applied Optics, 40, 3387-3394(2001).

    [44] Pu A, Psaltis D. Holographic 3-D disks using shift multiplexing[C], 165(2002).

    [45] Denz C, Tschudi T, Pauliat G et al. Volume hologram multiplexing using a deterministic phase encoding method[J]. Optics Communications, 85, 171-176(1991).

    [46] John R, Joseph J, Singh K. Holographic digital data storage using phase-modulated pixels[J]. Optics and Lasers in Engineering, 43, 183-194(2005).

    [47] Darsky A M, Markov V B. Angular sensitivity of holograms with a reference speckle wave[J]. Proceedings of SPIE, 1238, 54-61(1991).

    [48] Barbastathis G, Levene M, Psaltis D. Shift multiplexing with spherical reference waves[J]. Applied Optics, 35, 2403-2417(1996).

    [49] Markov V, Millerd J, Trolinger J et al. Multilayer volume holographic optical memory[J]. Optics Letters, 24, 265-267(1999).

    [50] D'Auria L, Huignard J P, Slezak C et al. Experimental holographic read-write memory using 3-D storage[J]. Applied Optics, 13, 808-818(1974).

    [51] Mikaeliane A L. Holographic bulk memories using lithium niobate crystals for data recording[M]. Barrekette E S, Stroke G W, Nesterikhin Y E, et al. Optical information processing, 217-233(1978).

    [52] Thaxter J B, Kestigian M. Unique properties of SBN and their use in a layered optical memory[J]. Applied Optics, 13, 913-924(1974).

    [53] Zhou H J, Morozov V, Neff J. Characterization of Dupont photopolymers in infrared light for free-space optical interconnects[J]. Applied Optics, 34, 7457-7459(1995).

    [54] Pu A, Psaltis D. High-density recording in photopolymer-based holographic three-dimensional disks[J]. Applied Optics, 35, 2389-2398(1996).

    [55] Bieringer T. Photoaddressable polymers[M]. Holographic data storage, 209-228(2000).

    [56] Orlov S S, Bjornson E, Phillips W et al. High transfer rate (1 Gbit/sec) high-capacity holographic disk digital data storage system[C], 190-191(2002).

    [57] Waldman D A, Li H Y S, Horner M G. Volume shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material[J]. Journal of Imaging Science & Technology, 41, 497-514(1997).

    [58] Suzuki N, Tomita Y, Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films[J]. Applied Physics Letters, 81, 4121-4123(2002).

    [59] Goldenberg L M, Sakhno O V, Smirnova T N et al. Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation[J]. Chemistry of Materials, 20, 4619-4627(2008).

    [60] Omura K, Tomita Y. Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm[J]. Journal of Applied Physics, 107, 023107(2010).

    [61] Hata E J, Mitsube K, Momose K et al. Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization[J]. Optical Materials Express, 1, 207-222(2011).

    [62] Tao S Q, Xu M. A study for making a thin silver halide phase hologram with an expectation phase modulation[J]. Acta Optica Sinica, 17, 1015-1020(1997).

    [63] Yuan Q, Tao S Q, Song X H et al. Disk-type 3-D holographic storage in a photorefractive crystal[J]. Chinese Journal of Lasers, 26, 1097-1102(1999).

    [64] Song X H, Tao S Q, Jiang Z Q et al. Study on thermal fixing process of holograms in photorefractive crystals[J]. Chinese Journal of Lasers, 28, 59-62(2001).

    [65] Wan Y H, Yuan W, Liu G Q et al. Study on the characteristics of scattering noise in photorefractive holographic storage[J]. Chinese Journal of Lasers, 30, 529-532(2003).

    [66] Guo Y J, Zhang J, Liu C X et al. Holographic storage properties of Zn∶Fe∶LiNbO3 crystals[J]. Acta Photonica Sinica, 33, 570-572(2004).

    [67] Liu Y W, Liu L R, Zhou C H et al. Experimental study of non-volatile holographic storage of doubly- and triply-doped lithium niobate crystals[J]. Chinese Journal of Lasers, 28, 165-168(2001).

    [68] Yao H W, Huang M J, Chen Z Y et al. Optimization of acrylamide-based photopolymer and its holographic character investigation[J]. Chinese Journal of Lasers, 29, 972-974(2002).

    [69] Huang M J, Yao H W, Chen Z Y et al. The factor of introducing the Bragg-mismatch during the photopolymer holographic exposure[J]. Acta Photonica Sinica, 31, 855-859(2002).

    [70] Huang M J, Yao H W, Chen Z Y et al. Study on the character of novel green light sensitive high-density digital holographic photopolymer[J]. Acta Physica Sinica, 51, 2536-2541(2002).

    [71] Huang M J, Yao H W, Chen Z Y et al. The effect of the thickness of photopolymer on high-density holographic recording parameters[J]. Acta Photonica Sinica, 31, 246-249(2002).

    [72] Bao P, He S R, He Q S et al. Compensation method for misregistration in pixel-matched holographic data storage system[J]. Optical Technique, 31, 297-298, 301(2005).

    [73] Cao L C, He Q S, Yu H B et al. 10 Gb/cm3 miniaturized volume holographic data storage and related identification system[J]. Chinese Science Bulletin, 49, 2495-2500(2004).

    [74] Huang X B, He Q S, Wang J G et al. Effect of performance of SLM and CCD on intrapage noise in volume[J]. Optical Technique, 28, 543-544(2002).

    [75] Jin G F, Cao L C, He Q S et al. Random modulation in high-density holographic data storage and correlation recognition system[J]. Proceedings of SPIE, 5206, 125-134(2003).

    [76] Li J H, Cao L C, Gu H R et al. Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage[J]. Optics Letters, 37, 936-938(2012).

    [77] Waldman D, Butler C, Raguin D. CROP holographic storage media for optical data storage greater than 100 bits/μm2[J]. Proceedings of SPIE, 5216, 10-25(2003).

    [78] Horimai H, Tan X D. Collinear technology for a holographic versatile disk[J]. Applied Optics, 45, 910-914(2006).

    [79] Horimai H, Tan X D. Advanced collinear holography[J]. Optical Review, 12, 90-92(2005).

    [80] Horimai H, Tan X D. Holographic information storage system: today and future[J]. IEEE Transactions on Magnetics, 43, 943-947(2007).

    [81] Shih H F. Integrated optical unit design for the collinear holographic storage system[J]. IEEE Transactions on Magnetics, 43, 948-950(2007).

    [82] Wilson W L, Curtis K R, Anderson K E et al. Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform[J]. Proceedings of SPIE, 5216, 178-191(2003).

    [83] Dhar L, Curtis K, Fäcke T. Coming of age[J]. Nature Photonics, 2, 403-405(2008).

    [84] Wilson W L, Anderson K E, Curtis K R et al. Toward the commercial realization of high-performance holographic data storage[J]. Proceedings of SPIE, 5221, 29-37(2004).

    [85] Anderson K, Curtis K. Polytopic multiplexing[J]. Optics Letters, 29, 1402-1404(2004).

    [86] Lin X, Liu J P, Hao J Y et al. Collinear holographic data storage technologies[J]. Opto-Electronic Advances, 3, 190004(2020).

    [87] Burr G W, Ashley J, Coufal H et al. Modulation coding for pixel-matched holographic data storage[J]. Optics Letters, 22, 639-641(1997).

    [88] Liu J P, Horimai H, Lin X et al. Optimal micro-mirror tilt angle and sync mark design for digital micro-mirror device based collinear holographic data storage system[J]. Applied Optics, 56, 4779-4784(2017).

    [89] Heanue J F, Bashaw M C, Hesselink L. Channel codes for digital holographic data storage[J]. Journal of the Optical Society of America A, 12, 2432-2439(1995).

    [90] Chen R X, Hao J Y, Yu C Y et al. Dynamic sampling iterative phase retrieval for holographic data storage[J]. Optics Express, 29, 6726-6736(2021).

    [91] Tajima K, Nakamura Y, Hoshizawa T. High-density recording in holographic data storage system by dual 2-level run-length-limited modulation[J]. Japanese Journal of Applied Physics, 55, 09SA09(2016).

    [92] Tanaka K, Hara M, Tokuyama K et al. Improved performance in coaxial holographic data recording[J]. Optics Express, 15, 16196-16209(2007).

    [93] Nobukawa T, Nomura T. Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage[J]. Applied Optics, 53, 3773-3781(2014).

    [94] Goertzen B J, Mitkas P A. Error-correcting code for volume holographic storage of a relational database[J]. Optics Letters, 20, 1655-1657(1995).

    [95] Kim J, Wee J K, Lee J. Error correcting 4/6 modulation codes for holographic data storage[J]. Japanese Journal of Applied Physics, 49, 08KB04(2010).

    [96] Nakamura Y, Hoshizawa T. Two high-density recording methods with Run-length limited turbo code for holographic data storage system[J]. Japanese Journal of Applied Physics, 55, 09SA01(2016).

    [97] Katano Y, Muroi T, Kinoshita N et al. Demodulation of multi-level data using convolutional neural network in holographic data storage[C](2019).

    [98] Liu J P, Zhang L, Wu A N et al. High noise margin decoding of holographic data page based on compressed sensing[J]. Optics Express, 28, 7139-7151(2020).

    [99] Brady D J, Choi K, Marks D L et al. Compressive holography[J]. Optics Express, 17, 13040-13049(2009).

    [100] Marim M M, Atlan M, Angelini E et al. Compressed sensing with off-axis frequency-shifting holography[J]. Optics Letters, 35, 871-873(2010).

    [101] Jin , J, Yang B, Liang K et al. General image denoising framework based on compressive sensing theory[J]. Computers & Graphics, 38, 382-391(2014).

    [102] Xu X F, Cai L Z, Wang Y R et al. Blind phase shift extraction and wavefront retrieval by two-frame phase-shifting interferometry with an unknown phase shift[J]. Optics Communications, 273, 54-59(2007).

    [103] Jeon S H, Gil S K. 2-step phase-shifting digital holographic optical encryption and error analysis[J]. Journal of the Optical Society of Korea, 15, 244-251(2011).

    [104] Hariharan P, Oreb B F, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm[J]. Applied Optics, 26, 2504-2506(1987).

    [105] Horimai H. Multi-level data write/retrieve by phase-locked collinear holography[C], AF1J.2(2016).

    [106] Lin X, Huang Y, Li Y et al. Four-level phase pair encoding and decoding with single interferometric phase retrieval for holographic data storage[J]. Chinese Optics Letters, 16, 032101(2018).

    [107] Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. Journal of the Optical Society of America A, 4, 118-123(1987).

    [108] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [109] Fienup J R, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 3, 1897-1907(1986).

    [110] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [111] Pan X C, Liu C, Lin Q et al. Ptycholographic iterative engine with self-positioned scanning illumination[J]. Optics Express, 21, 6162-6168(2013).

    [112] Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials[J]. Journal of the Optical Society of America A, 12, 1932-1941(1995).

    [113] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 133, 339-346(1997).

    [114] Volkov V V, Zhu Y, De G M. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 33, 411-416(2002).

    [115] Lin X, Hao J Y, Wang K et al. Single-s hotnon-interferometric phase retrieval in holographic data storage[J]. Proceedings of SPIE, 11500, 1150007(2020).

    [116] Lin X, Huang Y, Shimura T et al. Fast non-interferometric iterative phase retrieval for holographic data storage[J]. Optics Express, 25, 30905-30915(2017).

    [117] Desset C, Macq B, Vandendorpe L. Block error-correcting codes for systems with a very high BER: theoretical analysis and application to the protection of watermarks[J]. Signal Processing: Image Communication, 17, 409-421(2002).

    [118] Hao J Y, Ren Y H, Zhang Y Y et al. Non-interferometric phase retrieval for collinear phase-modulated holographic data storage[J]. Optical Review, 27, 419-426(2020).

    [119] Lin X, Hao J Y, Wang K et al. Frequency expanded non-interferometric phase retrieval for holographic data storage[J]. Optics Express, 28, 511-518(2020).

    [120] Nishizaki Y, Horisaki R, Kitaguchi K et al. Analysis of non-iterative phase retrieval based on machine learning[J]. Optical Review, 27, 136-141(2020).

    [121] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [122] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [123] Sinha A, Lee J, Li S et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).

    [124] Hao J Y, Lin X, Lin Y K et al. Lensless phase retrieval based on deep learning used in holographic data storage[J]. Optics Letters, 46, 4168-4171(2021).

    [125] Kakichashvili S D. Method for phase polarization recording of holograms[J]. Soviet Journal of Quantum Electronics, 4, 795-798(1974).

    [126] Nikolova L, Todorov T. Volume amplitude holograms in photodichroic materials[J]. Optica Acta: International Journal of Optics, 24, 1179-1192(1977).

    [127] Nikolova L, Todorov T, Stefanova P. Polarization sensibility of the photodichroic holographic recording[J]. Optics Communications, 24, 44-46(1978).

    [128] Kuroda K, Matsuhashi Y, Fujimura R et al. Theory of polarization holography[J]. Optical Review, 18, 374-382(2011).

    [129] Zang J L, Fan F, Liu Y et al. Four-channel volume holographic recording with linear polarization holography[J]. Optics Letters, 44, 4107-4110(2019).

    [130] Bittner R, Meerholz K, Steckman G et al. Dark decay of holograms in photorefractive polymers[J]. Applied Physics Letters, 81, 211-213(2002).

    [131] Cheng N, Swedek B, Prasad P N. Thermal fixing of refractive index gratings in a photorefractive polymer[J]. Applied Physics Letters, 71, 1828-1830(1997).

    [132] Bittner R, Meerholz K, Steckman G et al. Dark decay of holograms in photorefractive polymers[J]. Applied Physics Letters, 81, 211-213(2002).

    [133] Gibbons W M, Shannon P J, Sun S T et al. Surface-mediated alignment of nematic liquid crystals with polarized laser light[J]. Nature, 351, 49-50(1991).

    [134] Ramanujam P S. Evanescent polarization holographic recording of sub-200-nm gratings in an azobenzene polyester[J]. Optics Letters, 28, 2375-2377(2003).

    [135] Liu S, Gleeson M R, Guo J X et al. Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material[J]. Journal of the Optical Society of America B, 28, 2833-2843(2011).

    [136] Yeh J H, Harton A, Wyatt K. Reliability study of holographic optical elements made with DuPont photopolymer[J]. Applied Optics, 37, 6270-6274(1998).

    [137] Trofimova A V, Stankevich A I, Mogil’nyi V V. Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording[J]. Journal of Applied Spectroscopy, 76, 585-591(2009).

    [138] Lin S H, Cho S L, Chou S F et al. Volume polarization holographic recording in thick photopolymer for optical memory[J]. Optics Express, 22, 14944-14957(2014).

    [139] Li C, Cao L C, Wang Z et al. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer[J]. Optics Letters, 39, 6891-6894(2014).

    [140] Liu Y, Fan F L, Hong Y F et al. Volume holographic recording in Al nanoparticles dispersed phenanthrenequinone-doped poly(methyl methacrylate) photopolymer[J]. Nanotechnology, 30, 145202(2019).

    [141] Liu Y, Fan F L, Tan X D. SiO2 NPs-PQ/PMMA photopolymer material doped with a high-concentration photosensitizer for holographic storage[J]. Polymers, 12, 816(2020).

    [142] Liu Y, Fan F L, Hong Y F et al. Volume holographic recording in irgacure 784-doped PMMA photopolymer[J]. Optics Express, 25, 20654-20662(2017).

    [143] Fan F L, Liu Y, Hong Y F et al. Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA[J]. Optics Express, 26, 17794-17803(2018).

    [144] Fan F L, Liu Y, Hong Y F et al. Highly concentrated phenanthrenequinone-doped poly(MMA-co-ACMO) for volume holography[J]. Chinese Optics Letters, 16, 110901(2018).

    [145] Tan X D, Lin X, Wu A A et al. High density collinear holographic data storage system[J]. Frontiers of Optoelectronics, 7, 443-449(2014).

    Tools

    Get Citation

    Copy Citation Text

    Xiaodi Tan, Xiao Lin, Jinliang Zang, Fenglan Fan, Jinpeng Liu, Yuhong Ren, Jianying Hao. Advances in Multi-Dimensional Modulated Holographic Data Storage[J]. Acta Optica Sinica, 2023, 43(15): 1500004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Mar. 29, 2023

    Accepted: May. 12, 2023

    Published Online: Jul. 28, 2023

    The Author Email: Jianying Hao (haojianying123@163.com)

    DOI:10.3788/AOS230741

    Topics