Microelectronics, Volume. 52, Issue 5, 722(2022)

Review of DC-DC Circuits for Energy Harvesting

REN Hongtao, ZHANG Xuanhe, XU Meina, CHENG Xin, and ZHANG Zhang
Author Affiliations
  • [in Chinese]
  • show less
    References(21)

    [1] [1] DEZYANI M, GHAFOORIFARD H, SHEIKHAEI S, et al. A 60 mV input voltage, process tolerant start-up system for thermoelectric energy harvesting[J]. IEEE Trans Circ Syst I: Reg Pap, 2018, 65(10): 3568-3577.

    [2] [2] WU C Y, LOU J C, DENG Z B. An ultra-low power capacitor-less LDO for always-on domain in NB-IoT applications [C]// IEEE ICASI. Chiba, Japan. 2018: 137-140.

    [3] [3] LUO P, PENG D, WANG Y, et al. Review of solar energy harvesting for IoT applications [C]// IEEE APCCAS. Chengdu, China. 2018: 512-515.

    [4] [4] DAS A, GAO Y, KIM T H. A 76% efficiency boost converter with 220 mV self-startup and 2 nW quiescent power for high resistance thermo-electric energy harvesting [C]// 41st Euro Sol Sta Circ Conf. Graz, Austria. 2015: 237-240.

    [5] [5] BOSE S, ANAND T, JOHNSTON M L. A 3.5-mV input single-inductor self-starting boost converter with loss-aware MPPT for efficient autonomous body-heat energy harvesting [J]. IEEE J Sol Sta Circ, 2021, 56(6): 1837-1848.

    [6] [6] LIU X, HUANG L, RAVICHANDRAN K, et al. A highly efficient reconfigurable charge pump energy harvester with wide harvesting range and two-dimensional MPPT for internet of things [J]. IEEE J Sol Sta Circ, 2016, 51(5): 1302-1312.

    [7] [7] KIM H, MAENG J, PARK I, et al. A dual-mode continuously scalable-conversion-ratio SC energy harvesting interface with SC-based PFM MPPT and flying capacitor sharing scheme[J]. IEEE J Sol Sta Circ, 2021, 56(9): 2724-2735.

    [8] [8] ZHANG Z, TANG Z, HU W, et al. A zero-crossing detection circuit for energy harvesting[C]// IEEE 15th ICSICT. Kunming, China. 2020: 1-4.

    [9] [9] ZHANG Z, TANG Z, ZHANG Y. A novel control circuit for piezoelectric energy harvesting[J]. Microelec J, 2021, 113, 105068.

    [10] [10] SIMJEE F, CHOU P H.Everlast: long-life, supercapacitor-operated wireless sensor node[C]// ISLPED'06. Tegernsee Bavaria, Germany. 2006: 197-202.

    [11] [11] ELGENDY M A, ZAHAWI B, ATKINSON D J. Evaluation of perturb and observe MPPT algorithm implementation techniques[C]// PEMD. Bristol, UK. 2012: 1-6.

    [12] [12] LIU X, SNCHEZ-SINENCIO E. An 86% efficiency 12 μW self-sustaining PV energy harvesting system with hysteresis regulation and time-domain MPPT for IOT smart nodes [J]. IEEE J Sol Sta Circ, 2015, 50(6): 1424- 1437.

    [15] [15] WANG Y, LUO P, ZENG X, et al. A neural network assistance AMPPT solar energy harvesting system with 89.39% efficiency and 0.01~0.5% tracking errors [J]. IEEE Trans Circ Syst I: Reg Pap, 2020, 67(9): 2960-2971.

    [16] [16] CHANDRARATHNA S C, LEE J W. A self-resonant boost converter for photovoltaic energy harvesting with a tracking efficiency >90% over an ultra-wide source range [J]. IEEE J Sol Sta Circ, 2022, 57(6): 1865-1786.

    [17] [17] BANDYOPADHYAY S, CHANDRAKASAN A P. Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor [J]. IEEE J Sol Sta Circ, 2012, 47(9): 2199-2215.

    [18] [18] YU G, CHEW K W R, SUN Z C, et al. A 400 nW single-inductor dual-input-tri-output DC-DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting [J]. IEEE J Sol Sta Circ, 2015, 50(11): 2758-2772.

    [19] [19] CHEN P H, CHENG H C, LO C L. A single-inductor triple-source quad-mode energy-harvesting interface with automatic source selection and reversely polarized energy recycling[J]. IEEE J Sol Sta Circ, 2019, 54(10): 2671-2679.

    [20] [20] LI S, LIU X, CALHOUN B H. A 32 nA fully autonomous multi-input single-inductor multi-output energy- harvesting and power-management platform with 1.2×105 dynamic range, integrated MPPT, and multi-modal cold start-up[C]// IEEE ISSCC. San Francisco, CA, USA. 2022: 472-473.

    [21] [21] CHENG X, CHENG B, TANG Z, et al. A single-input multi-output piezoelectric energy harvesting system combining with P-SSHI and cold startup circuit[C]// IEEE APCCAS. Bangkok, Thailand. 2019: 65-68.

    [22] [22] KIM H, MAENG J, PARK I, et al. A 90.2% peak efficiency multi-input single-inductor multi-output energy harvesting interface with double-conversion rejection technique and buck-based dual-conversion mode [J]. IEEE J Sol Sta Circ, 2021, 56(3): 961-971.

    Tools

    Get Citation

    Copy Citation Text

    REN Hongtao, ZHANG Xuanhe, XU Meina, CHENG Xin, ZHANG Zhang. Review of DC-DC Circuits for Energy Harvesting[J]. Microelectronics, 2022, 52(5): 722

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Sep. 10, 2022

    Accepted: --

    Published Online: Jan. 18, 2023

    The Author Email:

    DOI:10.13911/j.cnki.1004-3365.220352

    Topics