Optics and Precision Engineering, Volume. 32, Issue 3, 317(2024)

Light intensity correction for light-induced thermoelastic spectroscopy based on nonlinear response of light intensity

Xiang CHEN1, Hao LIU1,2, Lu YAO1, Zhenyu XU1, Mai HU3、*, and Ruifeng KAN1、*
Author Affiliations
  • 1Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei23003, China
  • 2University of Science and Technology of China, Hefei3006, China
  • 3The Chinese University of Hong Kong, Hong Kong999077, China
  • show less
    References(20)

    [1] MA Y F, HE Y, TONG Y et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection[J]. Optics Express, 26, 32103-32110(2018).

    [2] [2] 娄存广, 代佳亮, 李瑞凯, 等. 光致热弹光谱气体检测技术研究进展[J]. 中国光学, 2023, 16(2): 229-242. doi: 10.37188/co.2022-0137LOUC G, DAIJ L, LIR K, et al. Research progress of gas detection based on laser-induced thermoelastic spectroscopy[J]. Chinese Optics, 2023, 16(2): 229-242.(in Chinese). doi: 10.37188/co.2022-0137

    [3] ZHOU S, XU L G, CHEN K et al. Absorption spectroscopy gas sensor using a low-cost quartz crystal tuning fork with an ultrathin iron doped cobaltous oxide coating[J]. Sensors and Actuators B: Chemical, 326, 128951(2021).

    [4] LANG Z T, QIAO S D, MA Y F. Fabry–Perot-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy[J]. Light: Advanced Manufacturing, 4, 1(2023).

    [5] LIU X N, MA Y F. New temperature measurement method based on light-induced thermoelastic spectroscopy[J]. Optics Letters, 48, 5687-5690(2023).

    [6] MA Y F, LIANG T T, QIAO S D et al. Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy[J]. Ultrafast Science, 3(2023).

    [7] DING J Y, HE T B, ZHOU S et al. Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy[J]. Applied Physics B, 124, 78(2018).

    [8] ZHENG K Y, ZHENG C T, HU L E et al. Light-induced off-axis cavity-enhanced thermoelastic spectroscopy in the near-infrared for trace gas sensing[J]. Optics Express, 29, 23213-23224(2021).

    [9] LOU C G, LIU X, WANG Y et al. Miniature quartz tuning fork-based broad spectral coverage and high detectivity infrared spectroscopy[J]. Infrared Physics & Technology, 126, 104322(2022).

    [10] LIU X N, QIAO S D, HAN G W et al. Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting[J]. Photoacoustics, 28, 100422(2022).

    [11] XU L G, LIU K, LIANG J Q et al. Micro-quartz crystal tuning fork-based photodetector array for trace gas detection[J]. Analytical Chemistry, 95, 6955-6961(2023).

    [12] WU Q, LV H H, LI J M et al. Side-excitation light-induced thermoelastic spectroscopy[J]. Optics Letters, 48, 562-565(2023).

    [13] [13] 房超, 乔顺达, 何应, 等. T字头石英音叉的设计及其气体传感性能[J]. 光学学报, 2023, 43(18): 3788/AOS231163. doi: 10.3788/AOS231163FANGCH, QIAOSH D, HEY, et al. Design and sensing performance of T-shaped quartz tuning Forks[J]. Acta Optica Sinica, 2023, 43(18): 3788/AOS231163.(in Chinese). doi: 10.3788/AOS231163

    [14] [14] 郭松杰, 刘建鑫, 周月婷, 等. 基于电流扫描波长响应函数直接确定正弦波扫描波长调制光谱中DFB激光器的相对波长响应[J]. 光学 精密工程, 2019, 27(11): 2281-2288. doi: 10.3788/ope.20192711.2281GUOS J, LIUJ X, ZHOUY T, et al. Direct determination of relative wavelength response of DFB lasers in sinusoidal scanning wavelength modulation spectra based on current scanning wavelength response function[J]. Opt. Precision Eng., 2019, 27(11): 2281-2288.(in Chinese). doi: 10.3788/ope.20192711.2281

    [15] [15] 陈昊, 鞠昱, 韩立. TDLAS波长调制法中调制深度与高次谐波中心幅值关系的研究[J]. 光谱学与光谱分析, 2021, 41(12): 3676-3681. doi: 10.3964/j.issn.1000-0593(2021)12-3676-06CHENH, JUY, HANL. Research on the relationship between modulation depth and center of high order harmonic in TDLAS wavelength modulation method[J]. Spectroscopy and Spectral Analysis, 2021, 41(12): 3676-3681.(in Chinese). doi: 10.3964/j.issn.1000-0593(2021)12-3676-06

    [16] XU L G, LI J S, LIU N W et al. Quartz crystal tuning fork based 2f/1f wavelength modulation spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 267, 120608(2022).

    [17] LIU H, CHEN X, HU M et al. Light-induced thermoelastic spectroscopy by employing the first harmonic phase angle method[J]. Optics Communications, 530, 129155(2023).

    [18] [18] 魏敏. 基于CW-QCL的长光程温度气体高灵敏检测方法研究[D]. 合肥: 中国科学技术大学, 2017.WEIM. Research on Long-optical-path High Sensitive Detection Method for Greenhouse Gases Based on CW-QCL[D].Hefei: University of Science and Technology of China, 2017. (in Chinese)

    [19] CHEN X, HU M, LIU H et al. Light intensity correction for quartz-enhanced photoacoustic spectroscopy using photothermal baseline[J]. Frontiers in Physics, 10, 1009843(2022).

    [20] LANG Z T, QIAO S D, HE Y et al. Quartz tuning fork-based demodulation of an acoustic signal induced by photo-thermo-elastic energy conversion[J]. Photoacoustics, 22, 100272(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiang CHEN, Hao LIU, Lu YAO, Zhenyu XU, Mai HU, Ruifeng KAN. Light intensity correction for light-induced thermoelastic spectroscopy based on nonlinear response of light intensity[J]. Optics and Precision Engineering, 2024, 32(3): 317

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 17, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: Mai HU (maihu@cuhk.edu.hk), Ruifeng KAN (kanruifeng@aiofm.ac.cn)

    DOI:10.37188/OPE.20243203.0317

    Topics