Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1615004(2025)

6D Pose Detection Method Based on Cross-Attention Weighting Mechanism

Yu Ye1, Jing Zhang1、*, Aimin Wang1, Heng Liu1, and Mingju Chen2
Author Affiliations
  • 1Southwest University of Science and Technology, School of Information Engineering, Mianyang 621010, Sichuan , China
  • 2Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 643002, Sichuan , China
  • show less
    Figures & Tables(17)
    The network architecture of the proposed pose estimation system
    Architecture of the CA mechanism
    Structure of main pose estimation network
    Feature optimization model
    Comparison of pose estimation results. (a) lamp; (b) duck; (c) driller; (d) cam; (e) cat
    Comparison of validation errors during training of pose estimation networks
    Accuracy threshold curve
    Layout of the experimental platform. (a) Overall layout; (b) physical drawing of slide table
    Pose estimation experiments. (a) Moving the measurement slider; (b) camera perspective
    Pose detection in different cases. (a) Simple background; (b) complex background; (c) overlapping colors
    Different background detection effects. (a) White background; (b) suit background; (c) red background
    • Table 1. Comparison of ADD(-S) on the LineMOD dataset

      View table

      Table 1. Comparison of ADD(-S) on the LineMOD dataset

      ObjectDenseFusionMethod of Ref. [16ORNetTexPoseQaQTMFNetProposed method
      mean94.392.8795.6191.795.396.796.8
      ape92.385.0381.5280.990.393.195.8
      benchvise93.295.54100.009994.394.097.5
      cam94.491.2796.8694.896.896.597.9
      can93.195.1898.7299.795.698.194.0
      cat96.593.6194.7192.695.898.097.9
      driller87.082.5699.0197.490.097.094.5
      duck92.388.0885.3583.492.193.497.7
      eggbox99.8099.90100.0094.910099.999.8
      glue100.099.6199.4293.410099.699.9
      hole pucher92.192.5890.3979.392.895.092.2
      iron97.095.91100.0099.898.196.998.2
      lamp95.394.4399.4298.396.997.997.8
      phone92.893.5697.6478.996.597.395.9
    • Table 2. Comparison of AUC on the YCB-Video dataset

      View table

      Table 2. Comparison of AUC on the YCB-Video dataset

      ObjectDenseFusionD-SNetMethod of Ref. [16Uni6DProposed method
      mean93.192.291.894.595.0
      master chef can96.493.393.994.897.4
      cracker box95.596.092.991.396.9
      sugar box97.597.495.495.997.7
      tomato soup can94.693.793.394.196.9
      mustard bottle97.296.195.495.295.8
      tuna fish can96.695.894.994.797.2
      pudding box96.596.294.094.396.3
      gelatin box98.195.697.697.198.4
      potted meat can91.389.390.692.895.3
      banana96.696.991.796.097.4
      pitcher base97.196.393.196.397.3
      bleach cleanser95.894.093.494.795.9
      bowl88.285.192.994.393.5
      mug97.197.196.196.597.9
      power drill96.094.593.393.896.3
      wood block89.790.987.694.493.6
      scissors95.293.895.786.994.8
      large marker97.596.895.796.497.0
      large clamp72.972.075.494.182.6
      extra large clamp69.873.273.093.981.1
      foam brick92.591.894.296.096.2
    • Table 3. Comparative analysis of model ablation experiments

      View table

      Table 3. Comparative analysis of model ablation experiments

      RGB-Dstage 1stage 2stage 3baseline modelADD(-S) /%
      88.8
      93.7
      94.9
      96.8
    • Table 4. Detection accuracy under different color backgrounds

      View table

      Table 4. Detection accuracy under different color backgrounds

      Color backgroundDetection accuracy
      Blue background96.6
      White background96.3
      Suit background95.9
      Red background96.1
    • Table 5. Comparison of centroid position and bias estimation results of different methods

      View table

      Table 5. Comparison of centroid position and bias estimation results of different methods

      Target

      object

      Setting

      position

      Position estimationDevaton of cemtoid
      DenseFusionProposed methodDenseFusionProposed method
      stapler(2.00,-9.67,6.30)(1.11,-9.05,4.35)(1.86,-9.55,4.71)2.231.60
      (1.00,-6.67,6.28)(1.82,-7.93,5.12)(1.82,-7.23,5.50)1.901.27
      globule(2.00,8.67,3.11)(2.73,7.93,1.68)(2.20,8.03,1.70)1.751.56
      (-1.00,-7.67,3.11)(-1.79,-6.01,1.81)(-1.62,-6.04,2.21)2.251.99
      brick(2.00,-9.67,3.65)(2.84,-7.82,2.50)(2.54,-8.35,2.80)2.331.66
      (1.00,-6.67,3.65)(1.96,-5.15,2.37)(1.66,-5.45,2.78)2.211.64
      mean2.111.62
    • Table 6. Rotation angle deviation measurement

      View table

      Table 6. Rotation angle deviation measurement

      Angle /(°)X /mmY /mmZ /mmA /(°)B /(°)C /(°)Angular error /(°)
      012.06.15.21.191.19359.150.85
      9011.86.05.01.921.1990.270.27
      18011.55.74.71.660.80181.391.39
      27011.65.84.81.381.90269.480.52
    Tools

    Get Citation

    Copy Citation Text

    Yu Ye, Jing Zhang, Aimin Wang, Heng Liu, Mingju Chen. 6D Pose Detection Method Based on Cross-Attention Weighting Mechanism[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1615004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jan. 3, 2025

    Accepted: Mar. 12, 2025

    Published Online: Aug. 11, 2025

    The Author Email: Jing Zhang (zhangjing@swust.edu.cn)

    DOI:10.3788/LOP250443

    CSTR:32186.14.LOP250443

    Topics