Metrology & Measurement Technology, Volume. 45, Issue 2, 88(2025)

Controllable optomechanical coupling in chip⁃scale cavity optomechanical sensor resonator

Chengcheng Li*
References(16)

[1] DE LÉPINAY L M, PIGEAU B, BESGA B et al. A universal and ultrasensitive vectorial nanomechanical sensor for imaging 2D force fields. Nature Nanotechnology, 12, 156-162(2017).

[2] FOGLIANO F, BESGA B, REIGUE A et al. Ultrasensitive nano⁃optomechanical force sensor operated at dilution temperatures. Nature Communications, 12(2021).

[3] LIU J, ZHU K D. Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics. Photonics Research, 6, 867-874(2018).

[4] FLORES J G F, YEREBAKAN T, WANG W T et al. Parametrically driven inertial sensing in chip⁃scale optomechanical cavities at the thermodynamical limits with extended dynamic range. Laser & Photonics Reviews, 17(2023).

[5] LI W, LIU W Y, LIU C X et al. Broadband optomechanical accelerometer reaching the thermomechanical limit based on suspended Si3N4 membrane resonator. IEEE Sensors Journal, 24, 17528-17536(2024).

[6] LI Z, LI X W, CHEN D W et al. A chip⁃scale silicon cavity optomechanical accelerometer with extended frequency range. IEEE Sensors Journal, 24, 31849-31859(2024).

[7] WU M, WU N L, FIRDOUS T et al. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nature Nanotechnology, 12, 127-131(2017).

[8] LI B B, BRAWLEY G, GREENALL H et al. Ultrabroadband and sensitive cavity optomechanical magnetometry. Photonics Research, 8, 1064-1071(2020).

[9] LI B B, BÍLek J, HOFF U B et al. Quantum enhanced optomechanical magnetometry. Optica, 5, 850-856(2018).

[10] LI Y, ZHENG J J, GAO J et al. Design of dispersive optomechanical coupling and cooling in ultrahigh⁃Q / V slot⁃type photonic crystal cavities. Optics Express, 18, 23844-23856(2010).

[11] KRAUSE A G, WINGER M, BLASIUS T D et al. A high⁃resolution microchip optomechanical accelerometer. Nature Photonics, 6, 768-772(2012).

[12] BIROWOSUTO M D, YOKOO A, ZHANG G Q et al. Movable high⁃Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nature Materials, 13, 279-285(2014).

[13] YAMAMOTO T, NOTOMI M, TANIYAMA H et al. Design of a high⁃Q air⁃slot cavity based on a width⁃modulated line⁃defect in a photonic crystal slab. Optics Express, 16, 13809-13817(2008).

[14] SUN X K, ZHENG J J, POOT M et al. Femtogram doubly clamped nanomechanical resonators embedded in a high⁃Q two⁃dimensional photonic crystal nanocavity. Nano Letters, 12, 2299-2305(2012).

[15] CHEN D W, MUHAMMAD S, HUANG W Y et al. Parameter investigations on lithium⁃niobate⁃based photonic crystal optomechanical cavity. Results in Physics, 48(2023).

[16] HUANG Y J, FLORES J G F, CAI Z Q et al. Controllable optomechanical coupling and drude self⁃pulsation plasma locking in chip⁃scale optomechanical cavities. Optics Express, 25, 6851-6859(2017).

Tools

Get Citation

Copy Citation Text

Chengcheng Li. Controllable optomechanical coupling in chip⁃scale cavity optomechanical sensor resonator[J]. Metrology & Measurement Technology, 2025, 45(2): 88

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Sensor Technology

Received: Nov. 22, 2024

Accepted: --

Published Online: Jul. 23, 2025

The Author Email:

DOI:10.11823/j.issn.1674-5795.2025.02.09

Topics