Journal of Innovative Optical Health Sciences, Volume. 18, Issue 5, 2550008(2025)

Inflammatory cytokine regulation and behavioral improvement in depressed mice: The role of photobiomodulation

Ye Zhang, Meiyun Xia, Wei Song, Deyu Li, Xunbin Wei*, and Daifa Wang**
References(75)

[1] N. Guan, A. Guariglia, P. Moore, F. Xu, H. Al-Janabi. Financial stress and depression in adults: A systematic review. PLoS One, 17, e0264041(2022).

[2] L. Dobrek, K. Glowacka. Depression and its phytopharmacotherapy — a narrative review. Int. J. Mol. Sci., 24, 4772(2023).

[3] R. Ding, D. Zhu, Y. Wang, M. Yong, X. Shi, P. He. Medical service utilisation and direct medical cost of depression: A cross-sectional analysis of urban medical claims data from China. BMJ Open, 12, e056422(2022).

[4] P. E. Greenberg, A. A. Fournier, T. Sisitsky, M. Simes, R. Berman, S. H. Koenigsberg, R. C. Kessler. The economic burden of adults with major depressive disorder in the United States (2010 and 2018). Pharmacoeconomics, 39, 653-665(2021).

[5] P. Cuijpers, H. Noma, E. Karyotaki, C. H. Vinkers, A. Cipriani, T. A. Furukawa. A network meta-analysis of the effects of psychotherapies, pharmacotherapies and their combination in the treatment of adult depression. World Psychiatry, 19, 92-107(2020).

[6] V. Patel, S. Saxena, C. Lund, G. Thornicroft, F. Baingana, P. Bolton, D. Chisholm, P. Y. Collins, J. L. Cooper, J. Eaton, H. Herrman, M. M. Herzallah, Y. Huang, M. J. D. Jordans, A. Kleinman, M. E. Medina-Mora, E. Morgan, U. Niaz, O. Omigbodun, M. Prince, A. Rahman, B. Saraceno, B. K. Sarkar, M. De Silva, I. Singh, D. J. Stein, C. Sunkel, J. Unutzer. The lancet commission on global mental health and sustainable development. Lancet, 392, 1553-1598(2018).

[7] V. S. Pereira, V. A. Hiroaki-Sato. A brief history of antidepressant drug development: From tricyclics to beyond ketamine. Acta Neuropsychiatr., 30, 307-322(2018).

[8] A. M. Bao, D. F. Swaab. The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Rep., 6, 45-53(2019).

[9] H. Eliwa, C. Belzung, A. Surget. Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action?. Biochem. Pharmacol., 141, 86-99(2017).

[10] P. Barone. The ‘Yin’ and the ‘Yang’ of the kynurenine pathway: Excitotoxicity and neuroprotection imbalance in stress-induced disorders. Behav. Pharmacol., 30, 163-186(2019).

[11] C. M. Pariante. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol., 27, 554-559(2017).

[12] R. K. Farooq, A. Tanti, S. Ainouche, S. Roger, C. Belzung, V. Camus. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology, 97, 120-130(2018).

[13] R. Troubat, P. Barone, S. Leman, T. Desmidt, A. Cressant, B. Atanasova, B. Brizard, W. El Hage, A. Surget, C. Belzung, V. Camus. Neuroinflammation and depression: A review. Eur. J. Neurosci., 53, 151-171(2021).

[14] R. Das, M. P. Z. Emon, M. Shahriar, Z. Nahar, S. M. A. Islam, M. A. Bhuiyan, S. N. Islam, M. R. Islam. Higher levels of serum IL-1beta and TNF-alpha are associated with an increased probability of major depressive disorder. Psychiatry Res., 295, 113568(2021).

[15] X. Min, G. Wang, Y. Cui, P. Meng, X. Hu, S. Liu, Y. Wang. Association between inflammatory cytokines and symptoms of major depressive disorder in adults. Front. Immunol., 14, 1110775(2023).

[16] S. Wang, S. Tang, J. Huang, H. Chen. Rapid-acting antidepressants targeting modulation of the glutamatergic system: Clinical and preclinical evidence and mechanisms. Gen. Psychiatr., 35, e100922(2022).

[17] X. Gonda, P. Dome, J. C. Neill, F. I. Tarazi. Novel antidepressant drugs: Beyond monoamine targets. CNS Spectr., 28, 6-15(2023).

[18] Y. Ding, Z. Wei, H. Yan, W. Guo. Efficacy of treatments targeting hypothalamic-pituitary-adrenal systems for major depressive disorder: A meta-analysis. Front. Pharmacol., 12, 732157(2021).

[19] C. Y. Xia, J. He, L. D. Du, Y. Yan, W. W. Lian, J. K. Xu, W. K. Zhang. Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol. Ther., 226, 107875(2021).

[20] O. Kohler-Forsberg, N. L. C, C. Hjorthoj, M. Nordentoft, O. Mors, M. E. Benros. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: Meta-analysis of clinical trials. Acta Psychiatr. Scand., 139, 404-419(2019).

[21] G. M. Wittenberg, A. Stylianou, Y. Zhang, Y. Sun, A. Gupta, P. S. Jagannatha, D. Wang, B. Hsu, M. E. Curran, S. Khan, M. R. C. I. Consortium, G. Chen, E. T. Bullmore, W. C. Drevets. Effects of immunomodulatory drugs on depressive symptoms: A mega-analysis of randomized, placebo-controlled clinical trials in inflammatory disorders. Mol. Psychiatry, 25, 1275-1285(2020).

[22] X. Hang, Y. Zhang, J. Li, Z. Li, Y. Zhang, X. Ye, Q. Tang, W. Sun. Comparative efficacy and acceptability of anti-inflammatory agents on major depressive disorder: A network meta-analysis. Front. Pharmacol., 12, 691200(2021).

[23] O. Vasiliu. Investigational drugs for the treatment of depression (part 1): Monoaminergic, orexinergic, GABA-ergic, and anti-inflammatory agents. Front. Pharmacol., 13, 884143(2022).

[24] F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, M. R. Hamblin. Brain photobiomodulation therapy: A narrative review. Mol. Neurobiol., 55, 6601-6636(2018).

[25] Q. Lin, S. Sha, F. Yang, H. Jin, Z. Zhang. KillerRed protein basedin vivophotodynamic therapy and corresponding tumor metabolic imaging. J. Innov. Opt. Health Sci., 09, 1640001(2016).

[26] Z. Huang, L. Li, H. Wang, X. Wang, K. Yuan, A. Meyers, L. Yang, F. W. Hetzel. Photodynamic therapy — an update on clinical applications. J. Innov. Opt. Health Sci., 02, 73-92(2011).

[27] C. Dompe, L. Moncrieff, J. Matys, K. Grzech-Lesniak, I. Kocherova, A. Bryja, M. Bruska, M. Dominiak, P. Mozdziak, T. H. I. Skiba, J. A. Shibli, A. Angelova Volponi, B. Kempisty, M. Dyszkiewicz-Konwinska. Photobiomodulation-underlying mechanism and clinical applications. J. Clin. Med., 9, 1724(2020).

[28] N. Hong, G. W. Kang, J. O. Park, P. S. Chung, M. Y. Lee, J. C. Ahn. Photobiomodulation regulates adult neurogenesis in the hippocampus in a status epilepticus animal model. Sci. Rep., 12, 15246(2022).

[29] F. D. S. Cardoso, F. Salehpour, N. C. Coimbra, F. Gonzalez-Lima, S. Gomes Da Silva. Photobiomodulation for the treatment of neuroinflammation: A systematic review of controlled laboratory animal studies. Front. Neurosci., 16, 1006031(2022).

[30] F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, J. Mahmoudi. Near-infrared photobiomodulation combined with coenzyme Q(10) for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res. Bull., 144, 213-222(2019).

[31] M. Yang, Z. Yang, P. Wang, Z. Sun. Current application and future directions of photobiomodulation in central nervous diseases. Neural Regen. Res., 16, 1177-1185(2021).

[32] Y. Jeon, H. R. Choi, J. H. Kwon, S. Choi, K. M. Nam, K. C. Park, K. C. Choi. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. Light Sci. Appl., 8, 114(2019).

[33] L. Tao, Q. Liu, F. Zhang, Y. Fu, X. Zhu, X. Weng, H. Han, Y. Huang, Y. Suo, L. Chen, X. Gao, X. Wei. Microglia modulation with 1070-nm light attenuates Abeta burden and cognitive impairment in Alzheimer’s disease mouse model. Light Sci. Appl., 10, 179(2021).

[34] Y. Tanaka, J. Akiyoshi, Y. Kawahara, Y. Ishitobi, K. Hatano, N. Hoaki, A. Mori, S. Goto, J. Tsuru, H. Matsushita, H. Hanada, K. Kodama, K. Isogawa, H. Kitamura, Y. Fujikura. Infrared radiation has potential antidepressant and anxiolytic effects in animal model of depression and anxiety. Brain Stimul., 4, 71-76(2011).

[35] X. Wu, S. L. Alberico, H. Moges, L. De Taboada, C. E. Tedford, J. J. Anders. Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress. Lasers Surg. Med., 44, 227-232(2012).

[36] W. F. Vieira, M. Gersten, M. A. K. Caldieraro, P. Cassano. Photobiomodulation for major depressive disorder: Linking transcranial infrared light, biophotons and oxidative stress. Harv. Rev. Psychiatry, 31, 124-141(2023).

[37] F. D. S. Cardoso, C. De Souza Oliveira Tavares, B. H. S. Araujo, F. Mansur, R. A. B. Lopes-Martins, S. Gomes Da Silva. Improved spatial memory and neuroinflammatory profile changes in aged rats submitted to photobiomodulation therapy. Cell Mol. Neurobiol., 42, 1875-1886(2022).

[38] A. Keresztes, L. Raffington, A. R. Bender, K. Bogl, C. Heim, Y. L. Shing. Hair cortisol concentrations are associated with hippocampal subregional volumes in children. Sci. Rep., 10, 4865(2020).

[39] V. Chesnokova, R. N. Pechnick, K. Wawrowsky. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav. Immun., 58, 1-8(2016).

[40] T. Mokhtari, Y. Tu, L. Hu. Involvement of the hippocampus in chronic pain and depression. Brain Sci. Adv., 5, 288-298(2019).

[41] E. B. Wang, R. Kaur, M. Fierro, E. Austin, L. R. Jones, J. Jagdeo, R. M. Hamblin, Y. Y. Huang. Photobiomodulation in the Brain, 49-66(2019).

[42] P. Cassano, R. Norton, M. A. Caldieraro, F. Vahedifard, F. Vizcaino, K. M. Mceachern, D. Iosifescu. Tolerability and safety of transcranial photobiomodulation for mood and anxiety disorders. Photonics, 9, 507(2022).

[43] A. Gutierrez-Menendez, M. Marcos-Nistal, M. Mendez, J. L. Arias. Photobiomodulation as a promising new tool in the management of psychological disorders: A systematic review. Neurosci. Biobehav. Rev., 119, 242-254(2020).

[44] V. Carola, F. D’olimpio, E. Brunamonti, F. Mangia, P. Renzi. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res., 134, 49-57(2002).

[45] H. M. Abelaira, G. Z. Reus, J. Quevedo. Animal models as tools to study the pathophysiology of depression. Braz. J. Psychiatry, 35, S112-S120(2013).

[46] A. Palucha-Poniewiera, K. Podkowa, A. Rafalo-Ulinska, P. Branski, G. Burnat. The influence of the duration of chronic unpredictable mild stress on the behavioural responses of C57BL/6J mice. Behav. Pharmacol., 31, 574-582(2020).

[47] A. Katsuki, K. Watanabe, L. Nguyen, Y. Otsuka, R. Igata, A. Ikenouchi, S. Kakeda, Y. Korogi, R. Yoshimura. Structural changes in hippocampal subfields in patients with continuous remission of drug-naive major depressive disorder. Int. J. Mol. Sci., 21, 3032(2020).

[48] C. D. Conrad. Chronic stress-induced hippocampal vulnerability: The glucocorticoid vulnerability hypothesis. Rev. Neurosci., 19, 395-411(2008).

[49] E. F. Osimo, T. Pillinger, I. M. Rodriguez, G. M. Khandaker, C. M. Pariante, O. D. Howes. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav. Immun., 87, 901-909(2020).

[50] J. Pearson-Leary, D. Eacret, R. Chen, H. Takano, B. Nicholas, S. Bhatnagar. Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Transl. Psychiatry, 7, e1160(2017).

[51] E. Beurel, M. Toups, C. B. Nemeroff. The bidirectional relationship of depression and inflammation: Double trouble. Neuron, 107, 234-256(2020).

[52] I. Goshen, T. Kreisel, O. Ben-Menachem-Zidon, T. Licht, J. Weidenfeld, T. Ben-Hur, R. Yirmiya. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry, 13, 717-728(2008).

[53] M. Sathyanesan, J. M. Haiar, M. J. Watt, S. S. Newton. Restraint stress differentially regulates inflammation and glutamate receptor gene expression in the hippocampus of C57BL/6 and BALB/c mice. Stress, 20, 197-204(2017).

[54] W. J. Su, T. Zhang, C. L. Jiang, W. Wang. Clemastine alleviates depressive-like behavior through reversing the imbalance of microglia-related pro-inflammatory state in mouse hippocampus. Front. Cell Neurosci., 12, 412(2018).

[55] A. P. Elomaa, L. Niskanen, K. H. Herzig, H. Viinamaki, J. Hintikka, H. Koivumaa-Honkanen, K. Honkalampi, M. Valkonen-Korhonen, I. T. Harvima, S. M. Lehto. Elevated levels of serum IL-5 are associated with an increased likelihood of major depressive disorder. BMC Psychiatry, 12, 2(2012).

[56] F. Dos Santos Cardoso, F. C. B. Mansur, B. H. S. Araujo, F. Gonzalez-Lima, S. Gomes Da Silva. Photobiomodulation improves the inflammatory response and intracellular signaling proteins linked to vascular function and cell survival in the brain of aged rats. Mol. Neurobiol., 59, 420-428(2022).

[57] J. J. Liu, Y. B. Wei, R. Strawbridge, Y. Bao, S. Chang, L. Shi, J. Que, B. S. Gadad, M. H. Trivedi, J. R. Kelsoe, L. Lu. Peripheral cytokine levels and response to antidepressant treatment in depression: A systematic review and meta-analysis. Mol. Psychiatry, 25, 339-350(2020).

[58] K. De Bosscher, W. Vanden Berghe, G. Haegeman. The interplay between the glucocorticoid receptor and nuclear factor-κ B or activator protein-1: Molecular mechanisms for gene repression. Endocrine Rev., 24, 488-522(2003).

[59] K. Suk, S. Yeou Kim, H. Kim. Regulation of IL-18 production by IFN gamma and PGE2 in mouse microglial cells: Involvement of NF-kB pathway in the regulatory processes. Immunol. Lett., 77, 79-85(2001).

[60] M. R. Hamblin, R. M. Hamblin, Y. Y. Huang. Photobiomodulation in the Brain, 97-110(2019).

[61] Y. Lu, R. Wang, Y. Dong, D. Tucker, N. Zhao, M. E. Ahmed, L. Zhu, T. C. Liu, R. M. Cohen, Q. Zhang. Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol. Aging, 49, 165-182(2017).

[62] D. D. S. Vogel, N. N. Ortiz-Villatoro, N. S. Araujo, M. J. G. Marques, F. Aimbire, F. A. Scorza, C. A. Scorza, R. Albertini. Transcranial low-level laser therapy in an in vivo model of stroke: Relevance to the brain infarct, microglia activation and neuroinflammation. J. Biophotonics, 14, e202000500(2021).

[63] H. I. Lee, S. W. Lee, N. G. Kim, K. J. Park, B. T. Choi, Y. I. Shin, H. K. Shin. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. J. Biophotonics, 10, 1502-1513(2017).

[64] C. A. Kohler, T. H. Freitas, B. Stubbs, M. Maes, M. Solmi, N. Veronese, N. Q. De Andrade, G. Morris, B. S. Fernandes, A. R. Brunoni, N. Herrmann, C. L. Raison, B. J. Miller, K. L. Lanctot, A. F. Carvalho. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: Systematic review and meta-analysis. Mol. Neurobiol., 55, 4195-4206(2018).

[65] G. Cavalli, S. Colafrancesco, G. Emmi, M. Imazio, G. Lopalco, M. C. Maggio, J. Sota, C. A. Dinarello. Interleukin 1alpha: a comprehensive review on the role of IL-1alpha in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun. Rev., 20, 102763(2021).

[66] P. Rider, Y. Carmi, E. Voronov, R. N. Apte. Interleukin-1alpha. Semin. Immunol., 25, 430-438(2013).

[67] R. Bent, L. Moll, S. Grabbe, M. Bros. Interleukin-1 beta-a friend or foe in malignancies?. Int. J. Mol. Sci., 19, 2155(2018).

[68] K. Jin, J. Lu, Z. Yu, Z. Shen, H. Li, T. Mou, Y. Xu, M. Huang. Linking peripheral IL-6, IL-1beta and hypocretin-1 with cognitive impairment from major depression. J. Affect. Disord., 277, 204-211(2020).

[69] A. Del Rey, D. Balschun, W. Wetzel, A. Randolf, H. O. Besedovsky. A cytokine network involving brain-borne IL-1beta, IL-1ra, IL-18, IL-6, and TNFalpha operates during long-term potentiation and learning. Brain Behav. Immun., 33, 15-23(2013).

[70] K. Yasuda, K. Nakanishi, H. Tsutsui. Interleukin-18 in health and disease. Int. J. Mol. Sci., 20, 649(2019).

[71] F. Salehpour, P. Cassano, N. Rouhi, M. R. Hamblin, L. De Taboada, F. Farajdokht, J. Mahmoudi. Penetration profiles of visible and near-infrared lasers and light-emitting diode light through the head tissues in animal and human species: A review of literature. Photobiomodul. Photomed. Laser Surg., 37, 581-595(2019).

[72] D. V. Iosifescu, R. J. Norton, U. Tural, D. Mischoulon, K. Collins, E. Mcdonald, L. De Taboada, S. Foster, C. Cusin, A. Yeung, A. Clain, D. Schoenfeld, M. R. Hamblin, P. Cassano. Very low-level transcranial photobiomodulation for major depressive disorder: The ELATED-3 multicenter, randomized, sham-controlled trial. J. Clin. Psychiatry, 83, 42180(2022).

[73] T. Ando, W. Xuan, T. Xu, T. Dai, S. K. Sharma, G. B. Kharkwal, Y. Y. Huang, Q. Wu, M. J. Whalen, S. Sato, M. Obara, M. R. Hamblin. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One, 6, e26212(2011).

[74] E. Eshaghi, S. Sadigh-Eteghad, G. Mohaddes, S. H. Rasta. Transcranial photobiomodulation prevents anxiety and depression via changing serotonin and nitric oxide levels in brain of depression model mice: A study of three different doses of 810 nm laser. Lasers Surg. Med., 51, 634-642(2019).

[75] Z. Xu, X. Guo, Y. Yang, D. Tucker, Y. Lu, N. Xin, G. Zhang, L. Yang, J. Li, X. Du, Q. Zhang, X. Xu. Low-level laser irradiation improves depression-like behaviors in mice. Mol. Neurobiol., 54, 4551-4559(2017).

Tools

Get Citation

Copy Citation Text

Ye Zhang, Meiyun Xia, Wei Song, Deyu Li, Xunbin Wei, Daifa Wang. Inflammatory cytokine regulation and behavioral improvement in depressed mice: The role of photobiomodulation[J]. Journal of Innovative Optical Health Sciences, 2025, 18(5): 2550008

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Aug. 19, 2024

Accepted: Nov. 20, 2024

Published Online: Aug. 27, 2025

The Author Email: Xunbin Wei (xwei@bjmu.edu.cn), Daifa Wang (daifa.wang@buaa.edu.cn)

DOI:10.1142/S1793545825500087

Topics