Chinese Internal Combustion Engine Engineering, Volume. 46, Issue 4, 108(2025)

State of the Art and Outlook for the Key Technologies of Hydrogen Internal Combustion Engines

SHUAI Shijin1,2, MA Xiao1, LI Yanfei1, QI Yunliang1, ZHANG Xiaoqing2, CHEN Qingchu1, WANG Zhi1, and XU Hongming1,3
Author Affiliations
  • 1School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
  • 2Institute for Aero Engine, Tsinghua University, Beijing 100084, China
  • 3Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
  • show less
    References(76)

    [1] [1] VERHELST S, WALLNER T. Hydrogen-fueled internal combustion engines[J]. Progress in Energy and Combustion Science, 2009, 35(6): 490–527.

    [2] [2] GOYAL H, JONES P, BAJWA A, et al. Design trends and challenges in hydrogen direct injection(H2DI)internal combustion engines — a review[J]. International Journal of Hydrogen Energy, 2024, 86: 1179–1194.

    [4] [4] AMPAH J D, JIN C, FATTAH I M R, et al. Investigating the evolutionary trends and key enablers of hydrogen production technologies: a patent-life cycle and econometric analysis[J]. International Journal of Hydrogen Energy, 2023, 48(96): 37674–37707.

    [5] [5] AMPAH J D, JIN C, AFRANE S, et al. Race towards net zero emissions(NZE)by 2050: reviewing a decade of research on hydrogen-fuelled internal combustion engines(ICE)[J]. Green Chemistry, 2024, 26(16): 9025–9047.

    [6] [6] FURUHAMA S. Problems of forecasting the future of advanced engines and engine characteristics of the hydrogen injection with LH2 tank and pump[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(1), 227–242.

    [7] [7] FURUHAMA S, KOBAYASHI Y. A liquid hydrogen car with a two-stroke direct injection engine and LH2-pump[J]. International Journal of Hydrogen Energy, 1982, 7(10): 809–820.

    [8] [8] KIESGEN G, KLTING M, BOCK C, et al. The new 12-cylinder hydrogen engine in the 7 series: the H2ICE age has begun[C/OL]//SAE Technical Paper, 2006: 2006-01-0431(2006-04-03)[2025-05-11]. DOI: 10.4271/2006-01-0431.

    [9] [9] WALLNER T, LOHSE-BUSCH H, GURSKI S, et al. Fuel economy and emissions evaluation of BMW Hydrogen 7 monofuel demonstration vehicles[J]. International Journal of Hydrogen Energy, 2008, 33(24): 7607–7618.

    [10] [10] WAKAYAMA N., MORIMOTO K, KASHIWAGI A, et al. Development of hydrogen rotary engine vehicle[C]//16th World Hydrogen Energy Conference. Lyon: French Association for Hydrogen & Fuel Cells, 2006: 733–738.

    [11] [11] SZWABOWSKI S J, HASHEMI S, STOCKHAUSEN W F, et al. Ford hydrogen engine powered P2000 vehicle[C/OL]//SAE Technical Paper, 2002: 2002-01-0243(2002-03-04)[2025-05-11]. DOI: 10.4271/2002-01-0240.

    [12] [12] NATKIN R, DENLINGER A, YOUNKINS M, et al. Ford 6.8 L hydrogen IC engine for the E-450 shuttle van[C/OL]//SAE Technical Paper, 2007: 2007-01-4096(2007-10-29)[2025-05-11]. DOI: 10.4271/2007-01-4096.

    [13] [13] RICHARDSON A, GOPALAKRISHNAN R, CHHAYA T, et al. Design considerations for hydrogen management system on Ford hydrogen fueled E-450 shuttle bus[J]. SAE International Journal of Commercial Vehicles, 2009, 2(1): 101–109.

    [14] [14] GOPALAKRISHNAN R, THROOP M J, RICHARDSON A, et al. Engineering the Ford H2 IC engine powered E-450 shuttle bus[C/OL]//SAE Technical paper, 2007: 2007-01-4095(2007-10-29)[2025-04-30]. DOI: 10.4271/2007-01-4095.

    [15] [15] LAPETZ J N R, ZANARDELLI V. The design, development, validation and delivery of the Ford H2ICE E-450 shuttle bus[C]//Graz: 1st International Symposium on Hydrogen Internal Combustion Engines, 2006.

    [16] [16] MOLNARNE M, SCHROEDER V. Flammability of gases in focus of European and US standards[J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 297–304.

    [17] [17] LI H L, KARIM G A. Hydrogen fueled spark-ignition engines predictive and experimental performance[J]. Journal of Engineering for Gas Turbines and Power, 2004, 128(1): 230–236.

    [18] [18] FRANQUET E, PERRIER V, GIBOUT S, et al. Free underexpanded jets in a quiescent medium: a review[J]. Progress in Aerospace Sciences, 2015, 77: 25–53, 19.

    [19] [19] SCARCELLI R, WALLNER T, MATTHIAS N, et al. Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles[J]. SAE International Journal of Engines, 2011, 4(2): 2361–2375.

    [20] [20] WU B F, TORELLI R, PEI Y J. Numerical modeling of hydrogen mixing in a direct-injection engine fueled with gaseous hydrogen[J/OL]. Fuel, 2023. 341: 127725(2023-02-15)[2025-04-30]. DOI: 10.1016/j.fuel.2023.127725.

    [21] [21] ADDEPALLI S K, PEI Y J, ZHANG Y, et al. Multi-dimensional modeling of mixture preparation in a direct injection engine fueled with gaseous hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(67): 29085–29101.

    [22] [22] KAISER S A, SALAZAR V M, HOOPS A A. Schlieren measurements in the round cylinder of an optically accessible internal combustion engine[J]. Applied Optics, 2013, 52(14): 3433–3443.

    [23] [23] YAN C, LUO Q H, LI Y K, et al. Investigation on the influence of nozzle shape on supersonic hydrogen jet[C/OL]//SAE Technical Paper, 2025: 2025-01-7109(2025-01-31)[2025-04-30]. DOI: 10.4271/2025-01-7109.

    [24] [24] ROLKE P, BROJA D, FINK A, et al. Pneumatic and optical characterization and optimization of hydrogen injectors for internal combustion engine application[J/OL]. Frontiers in Mechanical Engineering, 2022, 8: 868855(2022-08-30)[2025-04-30]. DOI: 10.3389/fmech.2022.868855.

    [25] [25] YEGANEH M, AKRAM M S, CHENG Q, et al. Experimental study of hydrogen jet dynamics: investigating free momentum and impingement phenomena[J]. International Journal of Hydrogen Energy, 2024, 68: 1423–1437.

    [26] [26] BUCHERER M, REINBOLD M, BUI T A, et al. Mixture formation and corresponding knock limits in a hydrogen direct injection engine using different jet forming caps[C/OL]//SAE Technical Paper, 2024: 2024-01-2113(2024-04-09)[2025-04-30]. DOI: 10.4271/2024-01-2113.

    [27] [27] MEDDA M, CALIA V, SACCO M, et al. Challenges and opportunities in developing a hydrogen high specific power SCE in the roadmap towards zero net GHG[C]// Aachen: 32nd Aachen Colloquium Sustainable Mobility, 2023.

    [28] [28] LAGET O, ROULEAU L, CORDIER M, et al. A comprehensive study for the identification of the requirements for an optimal H2 combustion engine[J]. International Journal of Engine Research, 2023, 24(10): 4326–4342.

    [29] [29] HOFFMANN G, DORADOUX L, MEISSONNIER G, et al. Application of H2ICE technology on commercial vehicles[C]// Aachen: 31st Aachen Colloquium Sustainable Mobility, 2022.

    [30] [30] COUREAU O, DAUVERCHAIN B, LEROY J B, et al. HyMot: H2 engine optimized for light commercial vehicle applications with near-zero emissions[C/OL]// 45th International Vienna Motor Symposium. Vienna: Publication VK, 2024. DOI: 10.62626/oi7t-gg3f.

    [31] [31] KUFFERATH D N, BAREISS S, CORNETTI G, et al. The synergy between operating strategy, hydrogen injection system and exhaust-gas aftertreatment as the key to an attractive hydrogen engine concept[C/OL]//45th International Vienna Motor Symposium. Vienna: Publication VK, 2024. DOI: 10.62626/4a8f-bnpk.

    [32] [32] LAICHTER J, KAISER S A, RAJASEGAR R, et al. Optical investigation of mixture formation in a hydrogen-fueled heavy-duty engine with direct-injection[J]. SAE International Journal of Advances and Current Practices in Mobility, 2023, 6(2): 593–612.

    [33] [33] LEE S, HWANG J, BAE C, Understanding hydrogen jet dynamics for direct injection hydrogen engines[J]. International Journal of Engine Research, 2023, 24(10): 4433–4444.

    [34] [34] SALAZAR V M, KAISER S A. An optical study of mixture preparation in a hydrogen-fueled engine with direct injection using different nozzle designs[J]. SAE International Journal of Engines, 2009, 2(2): 119–131.

    [35] [35] NAOYOSHI M, YOSHINORI M, SHIRO T, et al. A study of the mechanism of abnormal ignition in H2 engine[J]. Transactions of Society of Automotive Engineers of Japan, 2023, 54(1): 100–105.

    [36] [36] TAKASHI K, SHUUICHI L, MASARU H, et al. A study on abnormal combustion in hydrogen engines(backfire caused by residual electric energy for spark ignition)[J]. Transactions of the JSME, 1997, 63(610): 2209–2214.

    [37] [37] RNN K, SWARTS A, KALASKAR V, et al. Low-speed pre-ignition and super-knock in boosted spark-ignition engines: a review[J/OL]. Progress in Energy and Combustion Science, 2023, 95: 101064(2022-12-20)[2025-04-30]. DOI: 10.1016/j.pecs.2022.101064.

    [38] [38] AMANN M, ALGER T. Lubricant reactivity effects on gasoline spark ignition engine knock[J]. SAE International Journal of Fuels and Lubricants, 2012, 5(2): 760–771.

    [39] [39] OKADA Y, MIYASHITA S, IZUMI Y, et al. Study of low-speed pre-ignition in boosted spark ignition engine[J]. SAE International Journal of Engines, 2014, 7(2): 584–594.

    [40] [40] DAHNZ C, HAN K M, SPICHER U, et al. Investigations on pre-ignition in highly supercharged SI engines[J]. SAE International Journal of Engines, 2010, 3(1): 214–224.

    [41] [41] ZAHDEH A, ROTHENBERGER P, NGUYEN W, et al. Fundamental approach to investigate pre-ignition in boosted SI engines[J]. SAE International Journal of Engines, 2011, 4(1): 246–273.

    [42] [42] KAR A, HUISJEN A, ARADI A, et al. Assessing the impact of lubricant and fuel composition on LSPI and emissions in a turbocharged gasoline direct injection engine[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(5): 2568–2580.

    [43] [43] GSCHIEL K, WILFLING K, SCHNEIDER M. Development of a method to investigate the influence of engine oil and its additives on combustion anomalies in hydrogen engines[J/OL]. Automotive and Engine Technology, 2024, 9: 3(2024-05-14)[2025-04-30]. DOI: 10.1007/s41104-024-00141-7.

    [44] [44] KOYANAGI K, HIRUMA M, FURUHAMA S. Study on mechanism of backfire in hydrogen engines[C/OL]//SAE Technical Paper, 1994: 942035(1994-10-01)[2025-04-30].DOI: 10.4271/942035.

    [45] [45] PEARANDA A, BOGGIO S D M, LACAVA P T, et al. Characterization of flame front propagation during early and late combustion for methane-hydrogen fueling of an optically accessible SI engine[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23538–23557.

    [46] [46] JANAS P, RIBEIRO M D, KEMPF A, et al. Penetration of the flame into the top-land crevice - large-eddy simulation and experimental high-speed visualization[C/OL]//SAE Technical Paper, 2015: 2015-01-1907(2015-09-01)[2025-04-30].DOI: 10.4271/2015-01-1907.

    [47] [47] TRABOLD C, PUCK A, GALLAS T, et al. Influence of hydrogen combustion on engine components in full load operation[C]//Internationaler Motorenkongress 2024. Wiesbaden: Springer Fachmedien Wiesbaden, 2024: 117–129.

    [48] [48] LEE J T, KIM Y Y, LEE C W, et al. An investigation of a cause of backfire and its control due to crevice volumes in a hydrogen fueled engine[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(1): 204–210.

    [49] [49] LIANG Z D, XIE F X, WANG Z S, et al. Suppressing pre-ignition and knock in hydrogen direct injection spark ignition engines with variable valve timing and split injection[J/OL]. Energy Conversion and Management, 2025, 327: 119570(2025-01-28)[2025-04-30]. DOI: 10.1016/j.enconman.2025.119570.

    [50] [50] BIENEMAN J, ARAUJO F, NACHAPPA N, et al. Hydrogen internal combustion engine component investigation and development for heavy duty truck applications[C/OL]//ASME 2023 ICE Forward Conference. Pittsburgh, Pennsylvania: ASME, 2023: V001T07A004(2024-01-16)[2025-04-30].DOI: 10.1115/ICEF2023-110098.

    [51] [51] YEGANEH M, RNN K, KARIMKASHI S, et al. Experimental investigations of hydrogen pre-ignition phenomenon induced by two different lubricating oils in a rapid compression expansion machine[J]. Proceedings of the Combustion Institute, 2024, 40(1): 1–9.

    [52] [52] SUN J, MENG D Y, GAO D W, et al. Pre-ignition research on hydrogen engine in passenger-car/LCV[C]//Tianjin: 2024 World Congress on Internal Combustion Engines, 2024.

    [53] [53] AMANN M, ALGER T, MEHTA D. The effect of EGR on low-speed pre-ignition in boosted SI engines[J]. SAE International Journal of Engines, 2011, 4(1): 235–245.

    [54] [54] TAFEL S, MARTIN L. Development of a high-performance hydrogen engine[J]. MTZ Worldwide, 2024, 85(6): 48–55.

    [55] [55] BUNCE M, SEBA B, ANDREUTTI R, et al. Development of a high power, low emissions heavy duty hydrogen engine[C/OL]// SAE Technical Paper, 2024: 2024-01-2610(2024-04-09)[2025-04-30]. DOI: 10.4271/2024-01-2610.

    [56] [56] BAO L Z, SUN B G, LUO Q H, et al. Development of a turbocharged direct-injection hydrogen engine to achieve clean, efficient, and high-power performance[J/OL]. Fuel, 2022.324: 124713(2022-06-01)[2025-04-30]. DOI: 10.1016/j.fuel.2022.124713.

    [57] [57] ROTTENGRUBER H, WIEBICKE U, WOSCHNI G, et al. Wasserstoff-dieselmotor mit direkteinspritzung, hoher leistungsdichte und geringer abgasemission[J]. MTZ, 2000, 61(2): 122–128.

    [58] [58] DOBER G, PIOCK W. On the road experience with a LCV H2ICE: a practical path to eliminate emissions[C]//Aachen: 32nd Aachen Colloquium Sustainable Mobility, 2023.

    [59] [59] KAWAMURA A, YANAI T, SATO Y, et al. Summary and progress of the hydrogen ICE truck development project[J]. SAE International Journal of Commercial Vehicles, 2009, 2(1): 110–117.

    [60] [60] BARBA C, LEHMANN J, CONITZ M, et al. H2ICE: an additional contribution to defossilization[C]//Vienna: 46th International Vienna Motor Symposium, 2025.

    [61] [61] LIU L, ZHANG Y, QIN X, et al. Development of a 6.7 L direct injection, lean burn H2 spark ignition engine for medium-and heavy-duty commercial vehicles[C/OL]// SAE Technical Paper, 2025: 2025-01-8393(2025-04-01)[2025-04-30].DOI: 10.4271/2025-01-8393.

    [62] [62] BRIN J, WALDRON T. Hydrogen engine testing with superturbo compared to simulation[C/OL]//SAE Technical Paper, 2024: 2024-01-2087(2024-04-09)[2025-04-30].DOI: 10.4271/2024-01-2087.

    [63] [63] BEWSHER S, OFFNER G. A comparison of hydrogen and gasoline piston ring simulations[J/OL]. Lubricants, 2023, 11(10): 444(2023-10-13)[2025-04-30]. DOI: 10.3390/lubricants11100444.

    [65] [65] WANG D, YANG D L, HUANG C, et al. Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: a review[J/OL]. Fuel, 2021, 286: 119390(2020-10-16)[2025-04-30]. DOI: 10.1016/j.fuel.2020.119390.

    [66] [66] PARDO-GARCA C, ORJUELA-ABRIL S, PABN-LEN J. Investigation of emission characteristics and lubrication oil properties in a dual diesel–hydrogen internal combustion engine[J/OL]. Lubricants, 2022, 10: 59(2022-04-05)[2025-04-30]. DOI: 10.3390/lubricants10040059.

    [67] [67] VERHELST S, IERENS R. Hydrogen engine-specific properties[J]. International Journal of Hydrogen Energy, 2001, 26(9): 987–990.

    [69] [69] DAS L. Safety aspects of a hydrogen-fuelled engine system development[J]. International Journal of Hydrogen Energy, 1991, 16(9): 619–624.

    [70] [70] FRST S, DUB M, GRUBER M, et al. Safety of hydrogen-fueled motor vehicles with IC engines[C]// Munich: International Conference on Hydrogen Safety 2005, 2005.

    [71] [71] STOCKHAUSEN W F, NATKIN R J, KABAT D M, et al. Ford P2000 hydrogen engine design and vehicle development program[C/OL]// SAE Technical Paper, 2002: 2002-01-0240(2002-03-04)[2025-04-30]. DOI: 10.4271/2002-01-0240.

    [72] [72] WELCH A, MUMFORD D, MUNSHI S, et al. Challenges in developing hydrogen direct injection technology for internal combustion engines[C/OL]// SAE Technical Paper, 2008: 2008-01-2379(2008-10-06)[2025-04-30]. DOI: 10.4271/2008-01-2379.

    [73] [73] LAKSHMINARAYANAN P. A layout for the hydrogen engine[J]. Journal of Energy and Environmental Sustainability, 2023(13): 57–65.

    [74] [74] BIENEMAN J, ARAUJO F, IYCHODIANDA KUSHALAPPA N N. Hydrogen internal combustion engine component investigation and development for heavy duty truck applications[C]// Internal Combustion Engine Division Fall Technical Conference 2023. Pittsburgh, Pennsylvania: ASME, 2023: V001T07A004.

    [75] [75] FAYAZ H, SAIDUR R, RAZALI N, et al. An overview of hydrogen as a vehicle fuel[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5511–5528.

    [76] [76] HONG J C, YANG J S, WENG Z P, et al. Review on proton exchange membrane fuel cells: safety analysis and fault diagnosis[J/OL]. Journal of Power Sources, 2024, 617: 235118(2024-08-01)[2025-04-30]. DOI: 10.1016/j.jpowsour.2024.235118.

    [77] [77] SONG B X, WANG X Y, KANG Y, et al. Research on hydrogen leakage diffusion and safety analysis in hydrogen fuel cell vehicles with regard to leakage location and ventilation ports[J]. International Journal of Hydrogen Energy, 2024, 83: 173–187.

    [78] [78] LIU W, CHRISTOPHER D M. Dispersion of hydrogen leaking from a hydrogen fuel cell vehicle[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16673–16682.

    [79] [79] SUN Y Q. Explosions of hydrogen storages and the safety considerations in hydrogen-powered railway applications—a review[J]. Hydrogen, 2024, 5(4): 901–918.

    Tools

    Get Citation

    Copy Citation Text

    SHUAI Shijin, MA Xiao, LI Yanfei, QI Yunliang, ZHANG Xiaoqing, CHEN Qingchu, WANG Zhi, XU Hongming. State of the Art and Outlook for the Key Technologies of Hydrogen Internal Combustion Engines[J]. Chinese Internal Combustion Engine Engineering, 2025, 46(4): 108

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 7, 2025

    Accepted: Aug. 22, 2025

    Published Online: Aug. 22, 2025

    The Author Email:

    DOI:10.13949/j.cnki.nrjgc.2025.04.012

    Topics