Acta Optica Sinica, Volume. 44, Issue 8, 0817001(2024)
Digital Breast Tomography Reconstruction Based on Focusing Layer Separation from Multi-Angle X Ray Projections Using Blind Source Separation
[2] Shen S J, Sun Q, Huang X et al. Breast cancer screening guideline for Chinese women (version 2022)[J]. Journal of Chinese Research Hospitals, 9, 6-13(2022).
[3] Destounis S, Santacroce A, Arieno A. DBT as a screening tool and a diagnostic tool[J]. Current Breast Cancer Reports, 9, 264-271(2017).
[4] Gao Y M, Babb J S, Toth H K et al. Digital breast tomosynthesis practice patterns following 2011 FDA approval: a survey of breast imaging radiologists[J]. Academic Radiology, 24, 947-953(2017).
[5] Wu T, Moore R H, Rafferty E A et al. A comparison of reconstruction algorithms for breast tomosynthesis[J]. Medical Physics, 31, 2636-2647(2004).
[6] Zolotarev S A, Vengrinovich V L, Linev V N. Estimating the efficiency of the simultaneous algebraic reconstruction technique (SART), Bayesian inference reconstruction (BIR), and traditional shift-and-add (SAA) tomosynthesis using medical phantoms[J]. Pattern Recognition and Image Analysis, 24, 324-332(2014).
[7] Gomi T, Sakai R N, Goto M et al. Evaluation of digital tomosynthesis reconstruction algorithms used to reduce metal artifacts for arthroplasty: a phantom study[J]. Physica Medica: PM, 42, 28-38(2017).
[8] Huang J X, Huang S W, Cai J Z et al. OSSF-ATpV algorithm for digital breast tomosynthesis imaging[J]. Nuclear Electronics & Detection Technology, 41, 1033-1038(2021).
[9] Li Y, Shi N, Kong H H et al. Sparse angle CT reconstruction algorithm based on total variation and convolutional sparse coding in gradient domain[J]. Laser & Optoelectronics Progress, 58, 1210031(2021).
[10] Su T, Deng X L, Yang J C et al. DIR-DBTnet: deep iterative reconstruction network for three-dimensional digital breast tomosynthesis imaging[J]. Medical Physics, 48, 2289-2300(2021).
[11] Di J L, Lin J C, Zhong L Y et al. Review of sparse-view or limited-angle CT reconstruction based on deep learning[J]. Laser & Optoelectronics Progress, 60, 0811002(2023).
[12] Yu C Y, Li H L, Liu M R et al. A reconstruction algorithm for digital breast tomography based on weight-adjusted second order blind identification[P].
[13] Li H L. Digital breast tomosynthesis based on WASOBI and digital breast enhancement algorithm based on morphology feature extraction[D], 25-42(2022).
[14] Liu B, Xiao H, Yi C C. Second order blind identification of single-channel signal based on kernels[J]. Journal of Mechanical Strength, 40, 1043-1049(2018).
[15] Zhang X Y, Zhang H, Bian Z Y et al. Influence of projection data correction on digital breast tomosynthesis imaging[J]. Journal of Southern Medical University, 37, 323-329(2017).
[17] Liu M R. Statistical research on DBT reconstruction and artifact suppression[D], 5-6(2022).
[18] Borges L R, Barufaldi B, Caron R F et al. Technical Note: noise models for virtual clinical trials of digital breast tomosynthesis[J]. Medical Physics, 46, 2683-2689(2019).
[19] Zhu F B, Liu Y Y, Wen H X et al. Comparison and optimization of iterative reconstruction algorithms in digital breast tomosynthesis[J]. Optik, 203, 164033(2020).
[20] Vimieiro R B, Borges L R, Vieira M A C, Costa-Felix R, Machado J C, Alvarenga A V. Open-source reconstruction toolbox for digital breast tomosynthesis[M]. IFMBE proceedings, 349-354(2019).
[21] Fei B, Sun J Y, Zhang J J et al. Separation of multi-energy X-ray imaging based on sparse processing[J]. Optics and Precision Engineering, 25, 1106(2017).
Get Citation
Copy Citation Text
Chunyu Yu, Mingrui Liu, Ningning Sun. Digital Breast Tomography Reconstruction Based on Focusing Layer Separation from Multi-Angle X Ray Projections Using Blind Source Separation[J]. Acta Optica Sinica, 2024, 44(8): 0817001
Category: Medical optics and biotechnology
Received: Nov. 14, 2023
Accepted: Feb. 5, 2024
Published Online: Apr. 11, 2024
The Author Email: Yu Chunyu (yucy@njupt.edu.cn)
CSTR:32393.14.AOS231789