Laser Technology, Volume. 47, Issue 1, 140(2023)
Transport of micro-nano mass induced by laser on 1-D carriers
[1] [1] HE S Y. The transport and detection of nanoparticle in nanochannel[D]. Beijing: University of Chinese Academy of Sciences, 2016: 3-30 (in Chinese).
[2] [2] JOENSSON H N, SVAHN H A. Droplet microfluidics-a tool for single-cell analysis[J]. Angewandte Chemie International Edition, 2012, 51(49): 12176-12192.
[3] [3] EIJKEL J C T, BERG A V D. Nanofluidics: What is it and what can we expect from it[J]. Microfluidics and Nanofluidics, 2005, 1(3): 249-267.
[4] [4] SCHOCH R B, HAN J, RENAUD P. Transport phenomena in nanofluidics[J]. Reviews of Modern Physics, 2008, 80(3): 839-883.
[5] [5] NAIR P R, WU H A, JAYARAM A P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444.
[6] [6] HOLT J K, GYU P H, WANG Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776): 1034-1037.
[7] [7] HUMMER G, RASAIAH J C, NOWORYTAO J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190.
[8] [8] SECCHI E, MARBACH S, NIGUS A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature, 2016, 537(7619): 210-213.
[9] [9] FENG J, GRAF M, LIU K, et al. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536(7615): 197-200.
[10] [10] FEBG J, LIU K, GRAF M, et al. Observation of ionic Coulomb blockade in nanopores[J]. Nature Materials, 2016, 15(8): 850-855.
[11] [11] OU X, YU Y, WU R, et al. Shuttle suppression by polymer-sealed graphene-coated polypropylene separator[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5534-5542.
[12] [12] NAIR P R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight gra phene-based membranes[J]. Science, 2012, 335(6067): 442-444.
[13] [13] ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550.
[14] [14] YANG Q, SU Y, CHI C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16(12): 1198-1202.
[15] [15] CHEN L, SHI G, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383.
[16] [16] STEIN D, KRUITHOF M, DEKKER C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3): 035901.
[17] [17] MARTINS D, CHU V, PRAZERES D M F, et al. Ionic conductivity measurements in a SiO2 nanochannel with PDMS interconnects[J]. Procedia Chemistry, 2009, 1(1): 1095-1098.
[18] [18] DUAN C, MAJUMDAR A. Anomalous ion transport in 2-nm hydrophilic nanochannels[J]. Nature Nanotechnology, 2010, 5(12): 848-852.
[19] [19] XIE Q, ALIBAKHSHI M A, JIAO S, et al. Fast water transport in graphene nanofluidic channels[J]. Nature Nanotechnology, 2018, 13(3): 238-245.
[20] [20] WANG F Ch, ZHU Y B, WU H A. Structure and transport of confined liquid in nanochannels[J]. Scientia Sinica (Physica,Mecha-nica & Astronomica), 2018, 48(9): 094609(in Chinese).
[21] [21] OYAZUA E, WALTHER J H, MEGARIDIS C M, et al. Carbon nanotubes as thermally induced water pumps[J]. ACS Nano, 2017, 11(10): 9997-10002.
[22] [22] REGAN B C, ALONI S, RITCHIE R O, et al. Carbon nanotubes as nanoscale mass conveyors [J]. Nature, 2004, 428(6986): 924-927.
[23] [23] AMELIA B, RICCARDO R, EDUARDO R, et al. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes [J]. Science,2008, 320(5877): 775-778.
[24] [24] SUN Y M, PAN L J, LIU Y L, et al. Micro-bubble generated by laser irradiation on an individual carbon nanocoil[J]. Applied Surface Science,2015, 345: 428-432.
[25] [25] LIY Y L. Photo-thermal and light to force conversions in single carbon nanocoils and their applications[D]. Dalian: Dalian University of Technology, 2012: 26-52(in Chinese).
[26] [26] YIN P Q, WANG X B, WU Y X, et al. Experimental study on water droplet plasma indu ced by pulse Nd∶YAG laser[J]. Laser Technology, 2020, 44(6): 726-731(in Chinese).
[29] [29] WEI W. Research on optical properties and solar absorption properties of nanoparticle-containing paraffin [D]. Daqing: Northeast Petroleum University, 2019:15-20(in Chinese).
[30] [30] MA H, PAN L J, ZHAO Q, et al. Thermal conductivity of a single carbon nanocoil measured by field-emission induced thermal radiation[J]. Carbon, 2011, 50(3): 778-783.
[31] [31] WANG P. Research on opt-mechanical and opt-thermal properties of carbon nanocoils and their applications as flexible probes[D]. Dalian: Dalian University of Technology, 2019: 10-40(in Ch-inese).
[32] [32] HU D H, XU X Y, LIN K, et al. Study on heat conductivity of para-ffffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2414-2418 (in Chinese).
[33] [33] WANG P, PAN L J, LI Ch W, et al. Highly efficient near-infrared photothermal conversion of a single carbon nanocoil indicated by cell ejection[J]. Journal of Physical Chemistry, 2018, C122(48): 27696-27701.
[34] [34] DARHUBER A A, VALENTNO J P, TROIAN S M, et al. Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays[J]. Journal of Microelectromechanical Systems, 2003, 12(6): 873-879.
[35] [35] ZHONG Y. Research on dynamic characteristics of droplets impacting different solid surfaces and thermocapillary migration[D]. Nanchang: Nanchang University, 2019: 39-442(in Chinese).
[36] [36] GAO Sh Q, LIU H P. Capillary mechanics[M]. Beijing: Science Press, 2010: 32-36(in Chinese).
[37] [37] METTU S, CHAUDHURY M K. Motion of drops on a surface induced by thermal gradient and vibration [J]. Langmuir, 2008, 24(19): 10833-10837.
Get Citation
Copy Citation Text
LIU Yuli, SHEN Jian, SUN Yanming, LI Rui. Transport of micro-nano mass induced by laser on 1-D carriers[J]. Laser Technology, 2023, 47(1): 140
Category:
Received: Jan. 19, 2022
Accepted: --
Published Online: Apr. 12, 2023
The Author Email: