High Power Laser and Particle Beams, Volume. 35, Issue 1, 012012(2023)
Review on Hawking-Unruh radiation studies with high-intensity lasers
[1] Carlip S. Quantum gravity: a progress report[J]. Reports on Progress in Physics, 64, 885-942(2001).
[2] Howl R, Hackermüller L, Bruschi D E, et al. Gravity in the quantum lab[J]. Advances in Physics: X, 3, 1383184(2018).
[3] Xu Renxin, Wu Fei. Ultra high energy cosmic rays: strangelets?[J]. Chinese Physics Letters, 20, 806-809(2003).
[4] Faccio D. Laser pulse analogues for gravity and analogue Hawking radiation[J]. Contemporary Physics, 53, 97-112(2012).
[5] Hajicek P. Origin of Hawking radiation[J]. Physical Review D, 36, 1065-1079(1987).
[6] Almheiri A, Hartman T, Maldacena J, et al. The entropy of Hawking radiation[J]. Reviews of Modern Physics, 93, 035002(2021).
[7] Fulling S A. Nonuniqueness of canonical field quantization in Riemannian space-time[J]. Physical Review D, 7, 2850-2862(1973).
[8] Davies P C W. Scalar production in Schwarzschild and Rindler metrics[J]. Journal of Physics A: Mathematical and General, 8, 609-616(1975).
[9] Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 14, 870-892(1976).
[10] Crispino L C B, Higuchi A, Matsas G E A. The Unruh effect and its applications[J]. Reviews of Modern Physics, 80, 787-838(2008).
[11] Schützhold R, Schaller G, Habs D. Publisher’s note: signatures of the Unruh effect from electrons accelerated by ultrastrong laser fields [Phys. Rev. Lett. 97, 121302 (2006)][J]. Physical Review Letters, 97, 139904(2006).
[12] Bays H. Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the Theory of Everything[J]. Expert Review of Cardiovascular Therapy, 3, 393-404(2005).
[13] Laughlin R B, Pines D. The Theory of Everything[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 28-31(2000).
[14] Schützhold R, Schaller G, Habs D. Tabletop creation of entangled multi-keV photon pairs and the Unruh effect[J]. Physical Review Letters, 100, 091301(2008).
[15] Singleton D, Wilburn S. Hawking radiation, Unruh radiation, and the equivalence principle[J]. Physical Review Letters, 107, 081102(2011).
[16] Peña I, Sudarsky D. On the possibility of measuring the Unruh effect[J]. Foundations of Physics, 44, 689-708(2014).
[17] Lin S Y, Hu B L. Backreaction and the Unruh effect: new insights from exact solutions of uniformly accelerated detectors[J]. Physical Review D, 76, 064008(2007).
[18] Thirolf P G, Habs D, Henig A, et al. Signatures of the Unruh effect via high-power, short-pulse lasers[J]. The European Physical Journal D, 55, 379-389(2009).
[19] Dodonov V V. Current status of the dynamical Casimir effect[J]. Physica Scripta, 82, 038105(2010).
[20] Schützhold R, Maia C. Quantum radiation by electrons in lasers and the Unruh effect[J]. The European Physical Journal D, 55, 375-378(2009).
[21] Levin O, Peleg Y, Peres A. Unruh effect for circular motion in a cavity[J]. Journal of Physics A: Mathematical and General, 26, 3001-3011(1993).
[22] Bell J S, Leinaas J M. The Unruh effect and quantum fluctuations of electrons in storage rings[J]. Nuclear Physics B, 284, 488-508(1987).
[23] Belyanin A, Kocharovsky V V, Capasso F, et al. Quantum electrodynamics of accelerated atoms in free space and in cavities[J]. Physical Review A, 74, 023807(2006).
[24] Fabbri A, Balbinot R. Ramp-up of Hawking radiation in Bose-Einstein-condensate analog black holes[J]. Physical Review Letters, 126, 111301(2021).
[25] Gooding C, Biermann S, Erne S, et al. Interferometric Unruh detectors for Bose-Einstein condensates[J]. Physical Review Letters, 125, 213603(2020).
[26] Rodríguez-Laguna J, Tarruell L, Lewenstein M, et al. Synthetic Unruh effect in cold atoms[J]. Physical Review A, 95, 013627(2017).
[27] Kharzeev D. Quantum black Holes and thermalization in relativistic heavy ion collisions[J]. Nuclear Physics A, 774, 315-324(2006).
[28] Chen P, Tajima T. Testing Unruh radiation with ultraintense lasers[J]. Physical Review Letters, 83, 256-259(1999).
[29] Euvé L P, Robertson S, James N, et al. Scattering of co-current surface waves on an analogue black hole[J]. Physical Review Letters, 124, 141101(2020).
[30] Patrick S, Goodhew H, Gooding C, et al. Backreaction in an analogue black hole experiment[J]. Physical Review Letters, 126, 041105(2021).
[31] Pelat A, Gautier F, Conlon S C, et al. The acoustic black hole: a review of theory and applications[J]. Journal of Sound and Vibration, 476, 115316(2020).
[32] Gao Nansha, Zhang Zhicheng, Wang Qian, . Progress and applications of acoustic black holes[J]. Chinese Science Bulletin, 67, 1203-1213(2022).
[33] Barceló C, Liberati S, Visser M. Analogue gravity[J]. Living Reviews in Relativity, 14, 3(2011).
[34] Frercks J. Fizeau’s research program on ether drag: a long quest for a publishable experiment[J]. Physics in Perspective, 7, 35-65(2005).
[35] [35] Agrawal G. Nonlinear fiber optics[M]. 5th ed. Oxfd: Academic Press, 2013.
[36] Rubino E, Belgiorno F, Cacciatori S L, et al. Experimental evidence of analogue Hawking radiation from ultrashort laser pulse filaments[J]. New Journal of Physics, 13, 085005(2011).
[37] Belgiorno F, Cacciatori S L, Clerici M, et al. Hawking radiation from ultrashort laser pulse filaments[J]. Physical Review Letters, 105, 203901(2010).
[38] Philbin T G, Kuklewicz C, Robertson S, et al. Fiber-optical analog of the event horizon[J]. Science, 319, 1367-1370(2008).
[39] Rubino E, McLenaghan J, Kehr S C, et al. Negative-frequency resonant radiation[J]. Physical Review Letters, 108, 253901(2012).
[40] Drori J, Rosenberg Y, Bermudez D, et al. Observation of stimulated Hawking radiation in an optical analogue[J]. Physical Review Letters, 122, 010404(2019).
[41] Wang Weibin, Yang Hua, Tang Pinghua, et al. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths[J]. Optics Express, 21, 11215-11226(2013).
[42] Petty J, König F. Optical analogue gravity physics: resonant radiation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378, 20190231(2020).
[43] [43] Ispirian K A. High energy experimental proposals f the study of Unruh (effect) radiation[C]Proceedings of the 3rd International Conference on Quantum Electrodynamics Statistical Physics. 2012: 209212.
[44] [44] Ringwald A. Fundamental physics at an Xray free electron laser[C]Proceedings of the Electromagic Probes of Fundamental Physics. 2003: 6374.
[45] Consoli F, Tikhonchuk V T, Bardon M, et al. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 8, e22(2020).
[46] Han Manfen, Zheng Jinxing, Zeng Xianhu, et al. Investigation of combined degrader for proton facility based on BDSIM/FLUKA Monte Carlo methods[J]. Nuclear Science and Techniques, 33, 17(2022).
[47] Hu Po, Ma Zhiguo, Zhao Kai, et al. Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments[J]. Nuclear Science and Techniques, 32, 58(2021).
Get Citation
Copy Citation Text
Kai Zhao, Youjing Wang, Changbo Fu, Yugang Ma. Review on Hawking-Unruh radiation studies with high-intensity lasers[J]. High Power Laser and Particle Beams, 2023, 35(1): 012012
Category: Strong Field Quantum Electrodynamics Excited by Super Intense Laser Pulse
Received: Jun. 15, 2022
Accepted: --
Published Online: Feb. 10, 2023
The Author Email: Fu Changbo (cbfu@fudan.edu.cn)