Laser & Optoelectronics Progress, Volume. 56, Issue 20, 202401(2019)
Progress and Perspectives of Nonlinear Plasmonics
[1] Shen Y R. The principles of nonlinear optics[M]. New York: Wiley-Interscience, 575(1984).
[2] Boyd R W[M]. Nonlinear optics(2008).
[4] Maier S A. Plasmonics: fundamentals and applications[M]. Berlin: Springer Science & Business Media(2007).
[7] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[11] Xu H X, Bjerneld E J, Käll M et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 83, 4357-4360(1999).
[13] Anker J N, Hall W P, Lyandres O et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 7, 442-453(2008).
[30] Mühlschlegel P, Eisler H J. Martin O J F, et al. Resonant optical antennas[J]. Science, 308, 1607-1609(2005).
[35] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).
[41] Mesch M, Metzger B, Hentschel M et al. Nonlinear plasmonic sensing[J]. Nano Letters, 16, 3155-3159(2016).
[42] Yu R W. Cox J D, de Abajo F J G. Nonlinear plasmonic sensing with nanographene[J]. Physical Review Letters, 117, 123904(2016).
[49] Liu S D. Leong E S P, Li G C, et al. Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation[J]. ACS Nano, 10, 1442-1453(2016).
[54] Linden S. Niesler F B P, Förstner J, et al. Collective effects in second-harmonic generation from split-ring-resonator arrays[J]. Physical Review Letters, 109, 015502(2012).
[58] Shi J W, Liang W Y, Raja S S et al. Plasmonic enhancement and manipulation of optical nonlinearity in monolayer tungsten disulfide[J]. Laser & Photonics Reviews, 12, 1800188(2018).
[61] Shi J J, Li Y, Kang M et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions[J]. Nano Letters, 19, 3838-3845(2019).
[69] Kumar N, Najmaei S, Cui Q N et al. Second harmonic microscopy of monolayer MoS2[J]. Physical Review B, 87, 161403(2013).
[87] Baumberg J J, Aizpurua J, Mikkelsen M H et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 18, 668-678(2019).
[90] Chen W, Zhang S P, Kang M et al. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe[J]. Light: Science & Applications, 7, 56(2018).
[99] Yan R X, Gargas D, Yang P D. Nanowire photonics[J]. Nature Photonics, 3, 569-576(2009).
[109] Yin H Z. Surface plasmonic for nonlinear optical conversion[D]. Beijing: Beijing University of Posts and Telecommunications(2014).
[111] Grosse N B, Heckmann J, Woggon U. Nonlinear plasmon-photon interaction resolved by k-space spectroscopy[J]. Physical Review Letters, 108, 136802(2012).
[117] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).
[118] Mikhailov S A. Non-linear electromagnetic response of graphene[J]. Europhysics Letters (EPL), 79, 27002(2007).
[124] Gullans M, Chang D E. Koppens F H L, et al. Single-photon nonlinear optics with graphene plasmons[J]. Physical Review Letters, 111, 247401(2013).
[127] Manzoni M T. Silveiro I, de Abajo F J G, et al. Second-order quantum nonlinear optical processes in single graphene nanostructures and arrays[J]. New Journal of Physics, 17, 083031(2015).
[129] Hong S Y, Dadap J I, Petrone N et al. Optical third-harmonic generation in graphene[J]. Physical Review X, 3, 021014(2013).
[133] Cox J D. Marini A, de Abajo F J G. Plasmon-assisted high-harmonic generation in graphene[J]. Nature Communications, 8, 14380(2017).
Get Citation
Copy Citation Text
Yang Li, Junjun Shi, Di Zheng, Meng Kang, Tong Fu, Shunping Zhang, Hongxing Xu. Progress and Perspectives of Nonlinear Plasmonics[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202401
Category: Optics at Surfaces
Received: Jun. 10, 2019
Accepted: Jul. 31, 2019
Published Online: Oct. 22, 2019
The Author Email: Zhang Shunping (spzhang@whu.edu.cn), Xu Hongxing (hxxu@whu.edu.cn)