Laser & Optoelectronics Progress, Volume. 59, Issue 11, 1114004(2022)

Parameter Optimization of Laser Polishing Based on Orthogonal Experiment and Response Surface Method

Xudong Huang, Tao Wang*, Shaowu Hu, Tao Yao, Runpeng Miao, Qingchuan Kang, and Yizhi Zhang
Author Affiliations
  • College of Mechanical Engineering, Hebei University of Technology, Tianjing300401, China
  • show less
    Figures & Tables(17)
    Schematic of laser polishing equipment
    TC4 alloy after laser polishing. (a) Substrate surface and polished field; (b) surface after laser polishing
    Schematic of laser polishing. (a) Trajectory of laser polishing; (b) mechanism diagram of laser polishing
    Schematic of factors influencing laser polishing
    Surface microscopic morphologies. (a) Original surface; (b) No. 7 -1 sample; (c) No. 9-1 sample; (d) No. 3-1 sample
    Roughness changes before and after laser polishing
    Range effect diagrams.(a) Range variation diagram of defocusing distance; (b) range variation diagram of laser power; (c) range variation diagram of repetition frequency; (d) range variation diagram of scanning speed
    3D surface topographies of laser polishing. (a) Original surface; (b) surface after polishing with optimal parameters; (c) XY surface without polishing; (d) XY surface after polishing with optimal parameters
    Surface microscopic morphologies. (a) No. 20 sample; (b) No. 9 sample
    Comparison between actual and predicted values
    Effects of significant interaction terms on surface roughness. (a) Effects of laser power and repetition frequency; (b) effects of laser power and scanning speed; (c) effects of repetition frequency and scanning speed
    • Table 1. Main chemical compositions of TC4 titanium alloy

      View table

      Table 1. Main chemical compositions of TC4 titanium alloy

      CompositionAlVFeCONHTi
      Mass fraction /%5.50‒6.503.50‒4.500‒0.250‒0.080‒0.130‒0.130‒0.12Bal.
    • Table 2. Level table of orthogonal experimental factors

      View table

      Table 2. Level table of orthogonal experimental factors

      VariableLowMediumHigh
      Defocusing distance /mm345
      Laser power /W202530
      Laser repetition frequency /kHz7090110
      Laser scanning speed /(mms-1165017001750
    • Table 3. Design matrix of orthogonal experiment and results

      View table

      Table 3. Design matrix of orthogonal experiment and results

      Sample No.h /mmP /Wf /kHzv /(mms-1Roughness /μmAverage roughness /μm
      FirstSecond
      1-13207016500.18680.17740.1821
      2-13259017000.15260.16400.1583
      3-133011017500.11480.13690.1259
      4-14209017500.22910.21870.2239
      5-142511016500.23290.24810.2405
      6-14307017000.19310.17830.1857
      7-152011017000.27750.28930.2834
      8-15257017500.19880.23760.2182
      9-15309016500.20220.19520.1987
    • Table 4. Range analysis results

      View table

      Table 4. Range analysis results

      Parameterh /mmP /Wf /kHzv /(mm⋅s-1
      K10.15540.22980.19530.2071
      K20.21670.20570.19360.2091
      K30.23340.17010.21660.1893
      R0.0780.05970.0230.0198
    • Table 5. BBD experimental parameters and results

      View table

      Table 5. BBD experimental parameters and results

      Sample No.h /mmP /Wf /kHzv /(mms-1Ra /μm
      15259017500.2340
      24259017000.1842
      34259017000.1968
      44209016500.1790
      55259016500.2301
      652511017000.2565
      742011017000.2611
      85309017000.2098
      93309017000.1115
      104257016500.1688
      114209017500.2340
      124309017500.1546
      1332511017000.1799
      1442511016500.2440
      154307017000.1818
      1643011017000.1878
      174309016500.1784
      183259017500.1756
      194207017000.2012
      205209017000.2732
      213257017000.1381
      224259017000.1932
      234259017000.2009
      244257017500.1982
      255257017000.2298
      2642511017500.2189
      273259016500.1422
      283209017000.1820
      294259017000.1955
    • Table 6. Variance analysis of surface roughness model

      View table

      Table 6. Variance analysis of surface roughness model

      SourceSum of squaresMean squareFvaluePvalueReliability
      R2=0.9576RADJ2=0.9406RPRED2=0.9002
      Model0.0380.00475856.4< 0.0001Significant
      A0.0210.021251.14< 0.0001
      B0.0078310.00783192.83< 0.0001
      C0.0044190.00441952.39< 0.0001
      D0.000440.000445.220.0335
      BC0.0007250.0007258.590.0083
      BD0.0015510.00155118.380.0004
      CD0.00074370.00074378.820.0076
      C20.0011670.00116713.830.0014
      Residual0.0016870.00008436
      Lack of fit value0.0015320.000095782.480.1969Not significant
      Pure error0.00015470.00003868
      Total0.04
    Tools

    Get Citation

    Copy Citation Text

    Xudong Huang, Tao Wang, Shaowu Hu, Tao Yao, Runpeng Miao, Qingchuan Kang, Yizhi Zhang. Parameter Optimization of Laser Polishing Based on Orthogonal Experiment and Response Surface Method[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1114004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jun. 2, 2021

    Accepted: Jul. 28, 2021

    Published Online: Jun. 9, 2022

    The Author Email: Tao Wang (wtao_1@163.com)

    DOI:10.3788/LOP202259.1114004

    Topics