Laser & Infrared, Volume. 54, Issue 2, 214(2024)
Multi-target detection and tracking algorithm based on roadside LiDAR
[1] [1] Zhao J, Xu H, Liu H, et al. Detection and tracking of pedestrians and vehicles using roadside LiDAR sensors[J]. Transportation Research Part C: Emerging Technologies, 2019, 100: 68-87.
[4] [4] Arya Senna Abdul Rachman A. 3D-LIDAR multi object tracking for autonomous driving: multi-target detection and tracking under urban road uncertainties[D]. Delft: Delft University of Technology, 2017.
[5] [5] Weng X, Wang J, Held D, et al. 3D multi-object tracking: A baseline and new evaluation metrics[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 10359-10366.
[8] [8] Wu H, Han W, Wen C, et al. 3D multi-object tracking in point clouds based on prediction confidence-guided data association[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 5668-5677.
[12] [12] Park S, Wang S, Lim H, et al. Curved-voxel clustering for accurate segmentation of 3D LiDAR point clouds with real-time performance[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 6459-6464.
[15] [15] Bernardin K, Stiefelhagen R. Evaluating multiple object tracking performance: the clear mot metrics[J]. Eurasip Journal on Image and Video Processing, 2008, 2008: 1-10.
Get Citation
Copy Citation Text
GU Jing, HU Meng-kuan. Multi-target detection and tracking algorithm based on roadside LiDAR[J]. Laser & Infrared, 2024, 54(2): 214
Category:
Received: May. 8, 2023
Accepted: Jun. 4, 2025
Published Online: Jun. 4, 2025
The Author Email: HU Meng-kuan (abc15626232379@163.com)